

ОРГАНИЗАЦИЯ АО АСЭ

Акционерное общество «Атомэнергопроект» (АО «Атомэнергопроект»)

Санкт-Петербургский филиал – «Санкт-Петербургский проектный институт»

ул. Савушкина, д.82, лит. А, Санкт-Петербург, 197183 Телефон (812) 339-15-15, факс (499) 265-09-74 Е-mail: spbpi@aep.ru ОГРН 1087746998646, ИНН 7701796320 КПП 781443001 (997650001)

0909 20241	Nº OL-01/6	4968
** **	/	
Ha №	ОТ	

О направлении отзыва на автореферат

Ученому секретарю диссертационного совета 24.1.496.01, кандидату технических наук ИБРАЭ РАН Калантарову В.Е.

115191, г. Москва, ул. Б.Тульская, д.52

Уважаемый Валентин Евграфович!

Направляем Вам отзыв на автореферат диссертации соискателя ученой степени кандидата технических наук Томащика Дмитрия Юрьевича по теме «Модуль CONT_TH для расчета теплогидравлических параметров атмосферы в герметичном ограждении РУ с водяным теплоносителем при тяжелых авариях».

Приложение: отзыв Томащик на 3 л. в 2 экз.

Исполняющий обязанности первого заместителя генерального директора — директора Санкт-Петербургского филиала АО «Атомэнергопроект» — «Санкт-Петербургский проектный институт

А.В. Четкин

Фиськов Антон Александрович (812) 339-15-15, доб. 5-60-91

ОТЗЫВ

на автореферат диссертации **Томащика Дмитрия Юрьевича** «Модуль CONT_TH для расчета теплогидравлических параметров атмосферы в герметичном ограждении РУ с водяным теплоносителем при тяжелых авариях», представленной на соискание учёной степени кандидата технических наук по специальности 2.4.9 - «Ядерные энергетические установки, топливный цикл, радиационная безопасность»

Актуальность работы. Тема диссертационной работы, создание для кода СОКРАТ теплогидравлического модуля СОПТ_ТН с целью обеспечения согласованного расчета в системе первый контур, является актуальной, поскольку без современных расчётных кодов улучшенной оценки невозможно выполнить обоснование безопасности проектируемых АЭС. Выполнение взаимосогласованных расчетов параметров в контейнменте РУ требуется для обоснования водородной взрывобезопасности и оценки работоспособности оборудования, необходимого для преодоления последствий тяжелых аварий. Актуальной также является интеграция разработанного программного модуля с тяжелоаварийным кодом СОКРАТ, широко использующимся для анализа тяжелых аварий в РФ.

В диссертации защищаются результаты разработки теплогидравлического модуля CONT_TH, предназначенного для согласованного расчета протекания TA на AЭС с водяным теплоносителем совместно с кодом СОКРАТ, модельные подходы, реализованные в ходе его разработки, результаты валидации и кросс-верификации.

Научная новизна работы состоит в следующем: Впервые в рамках единого подхода по моделированию процессов для интегрального кода СОКРАТ реализовано расчетное моделирование теплогидравлических параметров РУ и ГО с использованием согласованных свойств теплоносителя для контурной гидравлики и в ГО, в том числе в метастабильных областях. Разработан ряд оригинальных моделей и методик, позволяющих моделировать теплогидравлические процессы и работу оборудования РУ в контейнменте.

Все основные результаты диссертации достаточно полно и своевременно опубликованы в печати, доложены на российских и международных

конференциях, в достаточной степени апробированы. Автор непосредственно участвовал в разработке моделей и их реализации в состав программного модуля CONT TH.

К диссертации можно сделать следующие замечания:

- 1. В описании модели на стр. 15 сказано, что учитывается следующий процесс: «перенос и осаждение капель жидкости из атмосферы помещений», однако в уравнениях, приведенных в разделе 1.3 нет уравнения переноса капельной влаги. В результате суммарная масса сконденсировавшейся в объеме воды остается в этом объеме (ср. уравнение (1.3) и 1.40). Таким образом, описание движения многофазной смеси ограничивается расчетом движения парогазовой смеси. Однако вкладом объемного конденсата в контейнментную теплогидравлику нельзя пренебрегать для отдельных случаев.
- 2. Для расчета объемной конденсации используется упрощенная модель, требующая пояснения. Формула для расчета интенсивности объемной конденсации (1.40) содержит переменные, имеющие отношение к интенсивности движения газовой среды, однако размерности левой и правой частей различаются. В эту формулу входит коэффициент k, определяемый в зависимости от скорости газовой среды. Если ориентироваться на диапазон изменения k, то скорости газовой среды должны находиться в диапазоне от 10 до 100 м/с. Для контейнмента это очень большие скорости, в основном, скорости среды меньше. Как объемная конденсация рассчитывается при малых скоростях?
- 3. Стр. 16: «мелкодисперсная фаза и конденсат на стенах моделируются эффективным образом (рассчитывается равновесное состояние без учета динамики изменения толщины конденсатной пленки). Толщина пленки конденсата вносит значительное термическое сопротивлении в процессе конденсации парогазовой среды на стенке, требуется обоснование корректности, используемой в программном модуле модели.
- 4. На стр. 43 утверждается: «В ходе валидации устанавливаются возможности отдельных моделей описывать процесс или явление в условиях, характеризующих моделируемый режим, полнота набора моделей в коде, а также адекватность взаимодействия моделей для описания протекания совокупности процессов и их взаимовлияния.» В этом предложении содержится правильное утверждение о необходимости валидации моделей по отдельным явлениям на

простых экспериментах, но никаких таких валидационных тестов не приведено. Автор сразу переходит к экспериментам на интегральном стенде, при рассмотрении которых отсутствует анализ чувствительности и неопределенности.

5. В частности, предложенная в диссертации упрощенная модель смешанной конвекции требует валидации на экспериментальных данных отдельных экспериментов.

Несмотря на эти замечания, можно положительно оценить диссертационную работу Томащика Д.Ю. В качестве рекомендации предлагается учесть изложенные в отзыве замечания при дальнейшей доработке модуля СОNТ ТН.

Учитывая изложенное выше, считаю:

Диссертационная работа Томащика Д.Ю. является законченным научным исследованием. По научно-техническому уровню, новизне и объему проведенных исследований она соответствует требованиям ВАК Минобрнауки России, предъявляемым к кандидатским диссертациям. Томащик Д.Ю. заслуживает присуждения ему ученой степени кандидата технических наук по специальности 2.4.9.

Эксперт Научно-конструкторского управления, АО «Атомэнергопроект», к.т.н.,

Сидоров В.Г.

Санкт-Петербургский филиал АО «Атомэнергопроект» — «Санкт-Петербургский проектный институт», 197183, Россия, г. Санкт-Петербург, ул. Савушкина, д.82, лит. А, e-mail: <u>VGSidorov@spbaep.ru</u>, рабочий телефон: (812) 339-15-15 (доб. 56095).

Подпись Сидорова Валерия Григорьевича заверяю.

Ведущий специалист

Отдела трудовых отношений

Перова О.Ф.