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Abstract 

The current work is devoted to application of different approaches to classification (zonation) of the Hanford 
formation – the uppermost geologic layer in the Hanford site (Washington, USA). Approaches based on machine 
learning (artificial neural networks and statistical learning theory) were used together with geostatistical methods 
(indicator approach) for the current task. The problem was significantly complicated by low number of samples, 
especially for some classes. Additional available information was also used. Advantages and drawbacks of used 
methods are discussed in the paper. 

Obtained results were compared with a map built by experts-geologists using additional geologic knowledge 
on the region under study. The comparison was performed with the help of the simplest methods developed for 
image analysis. 
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Аннотация 

Работа посвящена использованию различных подходов для классификации (зонирования) 
хэнфордской осадочной породы – верхнего геологического слоя Хэнфорского полигона (шт. Вашингтон, 
США). В работе обсуждены достоинства и недостатки различных подходов, основанных на методах 
машинного обучения (искусственные нейронные сети и статистическая теория обучения) и на методах 
геостатистики (индикаторный подход). Проблема зонирования усложняется малым количеством 
исходных измерений, особенно для некоторых классов. При зонировании использовалась 
дополнительная информация. 

Результаты, полученные различными методами, сравнивались с картой, построенной экспертами-
геологами с учетом знания геологических особенностей исследуемого региона. Для сравнения 
использовались простейшие подходы, разработанные для анализа изображений.  
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Introduction 

Hanford site aquifer (gravel and sand) units are not homogeneous systems. Hydraulic parameters differ within 
an aquifer unit and are spatially variable. Nevertheless, zones with similar values of hydraulic parameters 
(parameter zones) can be distinguished. This parameter zonation approach is an alternative to analysis of the 
spatial variation of the continuous hydraulic parameters. The parameter zonation approach is primarily 
motivated by the lack of measurements that would be needed for direct spatial modeling of the hydraulic 
properties. 

The main task of the current report is to adapt/develop techniques, based on geostatistical approaches and 
machine learning algorithms, for modeling of heterogeneous media in order to represent the spatial variability 
and uncertainty of the parameter zones. The zonation problem was formulated as a multiclass classification task. 
The case study containing the application of methods and their comparison was performed for the Hanford 
formation (Unit 1) zonation at the Hanford site.  

The following methods, some of which are extensions of binary classification approaches, were generalized 
to solve the multiclass classification task:  

• k nearest  neighbors (KNN),  
• probabilistic neural network (PNN),  
• geostatistical methods (indicator approach: indicator kriging, simulations),  
• artificial neural network multiplayer perceptron (MLP) 
• statistical learning theory: Support Vector Machine (SVM). 

All methods were compared using different approaches selected for the current case. The small number of 
initial data, particularly for some zones of Unit 1, does not allow for use of the traditional approach for 
extraction of a subset of the data for validation.  

1. Description of data 

The Hanford formation (U1) is the uppermost sedimentary unit included in hydrogeologic models of the 
Hanford site. U1 is presented by 5 zones with different hydraulic properties: class 1 – Hanford formation Gravel 
Type 1; class 2 – Hanford formation Gravel Type 2; class 3 – Hanford formation Gravel Type 3; class 4 – 
Hanford formation Sand; class 5 – Hanford formation Silt.  

The initial data on U1 zonation is a set of 225 samples. Each sample is ascribed to a class (parameter zone), 
and this ascribing is accompanied by a measure of data quality (expert information) that addresses the certainty 
with with the class assignment was made (the higher the value assigned – the lower the confidence in the 
assignment). Initial data on classes and confidences are presented in Fig. 1 by the help of Voronoi polygons, 
where each polygon takes on the value of the class assignment or rhe data quality.  

In addition to the measured data we are supplied with additional important information about the zonation 
based on geological interpretation of the data (see Fig. 2). This information can be considered and used in a 
several different ways. One interesting approach is based on using this information as additional soft 
information for machine learning algorithms. Another approach is related to the use of multiple point 
geostastistics. In this case, geological drawings are used as reference images to develop joint probability density 
functions. Here again, machine learning algorithms can be used as nonlinear estimators. At present, such studies 
are outside of the scope of the work. In the current work, the geological map is used for comparison of the 
results provided by different models. One type of comparison is connected with the spatial correlation structure 
of the geologic interpretation. Class indicator variogram roses of the geologic interpretation of the spatial 
distribution of the U1 zones are presented in Figs. 3 – 5. 

The U1 zonation data set is impossible to partition into training and validation data subsets that would each 
retain the characteristics of the whole data set. This is caused by the different number of samples interpreted as 
belonging to a class. There are very few representatives of class2 (6), of class4 (15) and especially of class5 
(only 1 member). So, the whole data set was used for training. Comparison of methods can be performed: 1) on 
the base of the accuracy test (application of the method to the training data), which can be used as a criteria with 
some caution, because the accuracy test gives only the empirical error for the training set and not the 
generalization error; and 2) comparisons/intercomparisons with geological map.  
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a)  b)  

Fig. 1. Initial data: classes (a) and confidences (b) 

 

 
Fig. 2. Geologically based Unit 1 zonation 
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a)  b)  

Fig. 3. Class indicator variogram rose for a priori geologic data: class1 (a) and class2 (b) 
 

a)  b)  

Fig. 4. Class indicator variogram rose for a priori geologic data: class3 (a) and class4 (b) 
 

 
Fig. 5. Class indicator variogram rose for a priori geologic data: class5 
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2. K-nearest neighbors for U1 zonation 

The optimal number of neighbors was searched using leave-one-out cross-validation and a bootstrap with 10 
and 50 resamplings. The curves presenting these procedures are shown in Fig. 6. The minimums of curves 
provided by various approaches differ from each other. According to these results several candidates were 
selected as an optimal number of neighbors: 9 neighbors (based on cross-validation), 12 neighbors (based on a 
bootstrap with 50 resamplings) and 13 neighbors (based on a bootstrap with 10 resamplings). Results of the 
accuracy test for different numbers of neighbors are presented in Table 1. It is evident that there are many 
misclassifications when applying this method that tend to be distributed around the boundaries of the class 
zones.  
 

Table 1. KNN accuracy test errors 
Number of neighbors Number of misclassifications Error (%) 

9 19 8.3 
12 20 8.73 
13 22 9.6 

 
The results on the regular rectandular grid for 1 neighbor (k=1 corresponds to the Voronoi polygons) (see 

Fig. 7), and for 9 and 12 neighbors (see Fig. 8) also are of a questionable quality. 9 and 12 neighbors provide 
very high smoothing – all small clusters of the different classes disappear. 1NN is much closer to the geologic 
classification (at least all clusters are present), but it does not have the spatial orientation of the classes expected 
by the geologists – compare visibly with Fig.1a and Fig.2. 
 

 
Fig. 6. Error curves to select the optimal number of neighbors for U1 zonation problem 
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Fig. 7.U1 zonation by 1-NN method 

 

a)  b)  

Fig. 8. U1 zonation by K-NN method with a) 9 neighbors; b) 12 neighbors 

3. Probabilistic Neural Network for U1 zonation 

The PNN approach does not need any generalization for the multiclass case, for there is no limitation on the 
number of classes in the basic theory. The detailed theory on PNN can be found in [1]. 

The PNN training procedure includes the following steps: 
1. Perform leave-k-out cross-validation to obtain different kernel bandwidths in the X and Y directions 

with orientation of X-axis in west direction (an example is presented in Fig. 9); 
2. Perform leave-k-out cross-validation on the rotation of the coordinate axes to select the best orientation 

(an example is presented in Fig. 10). Rotation is performed in the counterclockwise direction starting 
from the east-west direction corresponding to the X-axis (considered as 0 degrees); 

3. Repetition of the first step and second steps until there are no changes in both kernel bandwidth and 
orientation; 

4. Final gradient descent tuning of kernel bandwidths (an example is presented in Fig. 11). 
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Initially leave-k-out cross-validation was performed for k=1. Class size was not used while initializing the a 
priori class probabilities. The PNN parameters obtained after leave-1-out cross-validation are presented in Table 
2. The sigma values indicated in Table 2 correspond to the kernel bandwidths.  

 
Table 2. PNN parameters after leave-1-out cross-validation training 

X-sigma Y-sigma Orientation Training error 
129.607 499.166 22 0% 

 

 
Fig. 9. Error surface for PNN kernel bandwidth adaptation by leave-one-out out cross-validation with X-axes 

oriented towards  east-west direction 

 

 
Fig. 10. Error curve for the coordinate system orientation after leave-one-out out cross-validation 
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Fig. 11. Final adjusting of PNN kernel bandwidths by gradient decent method performed for preliminary results 

of leave-one-out cross-validation 
The accuracy test for PNN was very successful with only 1 misclassification: a point belonging to class 1 

was misclassified as class 4.  This misclassification was not unexpected, because the data point is surrounded 
only by members of class 4. Results of U1 zonation using PNN on a regular grid are presented in Figs. 12 and 
13, which show the classification made on the decision basis of a 0.5 threshold (Fig. 12) and the probability of 
the class winner being present (Fig. 13).  

This PNN provides a zonation pattern similar to the geologic interpretation. However, the uncertainty zones 
provided by PNN seem to be too narrow (approximately one pixel thick and nearly invisible). The narrowness of 
the uncertainty bands may be the result of overfitting. 

 

 
Fig. 12. U1 zonation by PNN trained using leave-one-out cross-validation 
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Fig. 13. Probability of the class winner according to the PNN trained using leave-one-out cross-validation 
Because PNN trained using leave-one-out cross-validation appears to be overfitting the data, other methods 

of training PNN were also performed. Leave-k-out cross-validation methodology was used to select PNN 
parameters and to compare different results. Using more than one point in cross-validation introduces some 
regularization in the training procedure and it was expected to help in overcoming the overfitting. 

The PNN tuning was performed with k set equal to 20, 15, 10, 8, 5, 4, 3, and 2. The training procedure was 
as described above. Table 3 summarizes the PNN parameters obtained after training, the cross-validation errors, 
and the results of accuracy tests.  

The difference between the two errors presented in Table 3 is of great importance. The accuracy test error is 
related to the question “how well was the training dataset learned.” Statistically, it corresponds to the Mean 
Square Error of the residuals. The accuracy test error, on the other hand, is the number of misclassifications 
found using the standard leave-1-out cross-validation procedure after the parameters were established using the 
leave-k-out training procedure for a given k. 

The cross-validation error is the final (the smallest one) error achieved during the training procedure 
corresponding to the training algorithm. It is the averaged misclassification over all sets of k-left-out samples. It 
can be written as: 

kn

m
CVerror

n

i
i∑

== 1 , 

where k is the number of samples being removed from the dataset using the leave-k-out algorithm, n is the 
number of cross-validation steps and mi are numbers of misclassifications in each step. When the data are not 
clustered, the cross-validation error can be considered as an unbiased estimation of the generalization error, i.e., 
the prediction error. However, the U1 zonation data are clustered, so the estimate of the prediction error is 
biased. The dependence of this bias from k is unknown, so for the clustered data cross-validation error is only 
the method training stop point. But still it gives some feeling of what accuracy can be expected. 

The U1 zonation results on the prediction grid obtained using PNN trained on different values of k are 
presented in Figs. 14 – 22.  For each value of k, the figures provide both the classification result and the 
probability of the class winner being found for each node of the grid. For leave-k-out PNN, the uncertainty 
zones are very narrow again for nearly all values of k. This suggests that the narrow uncertainty zones are due to 
the configuation of the initial data, so that the classes appear to be easily separable by PNN. 
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Table 3. Parameters of PNN after training by leave-k-out cross-validation approach 
k σX σY Orientation CV error Accuracy test 

(misclassifications) 
20 77.265 407.958 41 0.41 0 
15 364 131.138 164 0.23 1 
10 77.265 1054.34 32 0.18 3 
8 114.603 488.64 33 0.16 1 
6 116.531 730.382 33 0.11 4 
5 77.26 609.952 31 0.099 1  
4 111.301 527.423 19 0.089 1  
3 260.566 566.119 0 0.089 5 
2 112.884 488.967 20 0.51 1  

 

a)  b)  

Fig. 14. U1 zonation by PNN trained by leave-2-out cross-validation: classification (a), probability of the class 
winner (b) 

a)  b)  

Fig. 15. U1 zonation by PNN trained by leave-3-out cross-validation: classification (a), probability of the class 
winner (b) 
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a)  b)  

Fig. 16. U1 zonation by PNN trained by leave-4-out cross-validation: classification (a), probability of the class 
winner (b) 

 

a)  b)  

Fig. 17. U1 zonation by PNN trained by leave-5-out cross-validation: classification (a), probability of the class 
winner (b) 
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a)  b)  

Fig. 18. U1 zonation by PNN trained by leave-6-out cross-validation: classification (a), probability of the class 
winner (b) 

 

a)  b)  

Fig. 19. U1 zonation by PNN trained by leave-8-out cross-validation: classification (a), probability of the class 
winner (b) 
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a)  b)  

Fig. 20. U1 zonation by PNN trained by leave-10-out cross-validation: classification (a), probability of the class 
winner (b) 

 

a)  b)  

Fig. 21. U1 zonation by PNN trained by leave-15-out cross-validation: classification (a), probability of the class 
winner (b) 
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a)  b)  

Fig. 22. U1 zonation by PNN trained by leave-20-out cross-validation: classification (a), probability of the class 
winner (b) 

 
The results obtained using different values of k look rather different and it is not easy to compare them and 

to select the best. The conclusions on the quality of the result can be based on: 
1. results of the accuracy test – but here there is the possibility of overfitting; 
2. results of prediction on a subset of data not used during prediction phase; and 
3. qualitative and quantitative comparisons of the results on the prediction grid with the interpretation 

prepared by a geologist using expert knowledge of the geologic structure of the site. 
According to the accuracy test, models trained using the k-leave-out cross-validation approach with k set 

equal to 3, 6, and 10 are worse in comparison with the others. The other choices of k seem to provide not bad 
accuracy test result, but that could be the result of overfitting. 

Two other comparison approaches are discussed in the following sections. 

3.1. Comparison of results on the testing data set 
One of the possible approaches to compare methods deals with their application to a validation dataset that was 
not used in the training procedure. Here, this commonly used approach was modified slightly, because the 
original data contain too few representatives of 3 of the classes (6 in class2, 15 in class4 and 1 in class5) and 
only 2 classes (1 and 3) have sufficient number of samples to be partitioned into training and testing data 
subsets. Thus a traditional validation procedure, where the trained model is applied to data not used in the 
training procedure, is impossible. But during PNN prediction together with the trained model original data are 
used as model centers. So it is possible to select a part of data belonging to classes 1 and 3 (where there is 
enough data for such partitioning) and to check the model performance for the data from those classes. This 
approach has a disadvantage – testing is performed only for 2 classes, but still it opens a possibility for some 
intercomparison between different PNN models. 

This testing was performed for kernel models presented above (in section 3) by leave-k-out cross-validation 
training procedures. The comparison is performed between a set of models with known parameters. Results of 
this testing procedure are presented in Table 4. Below PNN models are called according to their number, which 
depends on the type of model training (k from leave-k-out cross-validation).   

Models 15, 10, 4 and 1 produced the worst results. As the best one can select models 20 and 8. The same 
models were among those that performed well on the accuracy test, too.  
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Table 4. Testing of different PNN models on testing data subset 
k σX σY Orientation 

(degrees) 
Number of 

misclassifications 
Classification error 

(%) 
20 77.265 407.958 41 9 6.9 
15 364 131.138 164 15 11.5 
10 77.265 1054.34 32 18 13.7 
8 114.603 488.64 33 8 6.1 
6 116.531 730.382 33 12 9.2 
5 77.26 609.952 31 13 9.9 
4 111.301 527.423 19 14 10.7 
3 260.566 566.119 0 12 9.2 
2 112.884 488.967 20 13 9.9 
1 129.607 499.166 22  19 14.5 

3.2. Comparison with geologic map 
The comparison of PNN model results with the a priori geologic interpretation (see Fig. 2) can be made 
qualitatively – the visual comparison of such parameters as orientation of classes, mutual position of classes, 
special spots of classes, etc. Based on such visual comparison, the following conclusions can be made: 

1. The main orientation of the main class 2 and class 3 area is caught in all results. 
2. The orientation of the class 5 area is wrong for the results obtained after training with leave-3-out and 

leave-15-out cross-validation (see Figs. 15 and 21). 
3. After training with leave-15-out and leave-20-out cross-validation the south-west corner rests un-

estimated – maximum probability for all classes is lower than 0.3 (see Figs. 21 and 22). 
4. The areas of the classes from the results obtained after training with leave-5-out and leave-10-out cross-

validation seem to be very narrow and long (the same can be seen from sigma values) – see Figs. 17 
and 20. On the contrary, areas of the classes obtained after training with leave-3-out cross-validation 
are too round (see Fig. 15). 

5. According to the visual comparison, the best results are obtained after training with leave-2-out and 
leave-4-out cross-validation (see Figs. 14 and 16). They have similar kernel parameters and orientation 
of coordinate axes. 

The quantitative comparison of the results with the a priori geologic interpretation can be performed, for 
example, using a measure like the Hamming distance (misclassification matrix) – the simplest measure of the 
identity of two patterns. The Hamming distance is considered here as the number of non-equal pixels. Hamming 
distances between the geologic map and the PNN classification results of U1 zonation are summarized in Tables 
5 – general difference and 6 – difference per class (how many pixels of a class in geologic map are assigned to 
any other class by a model). Zones where PNN classification differs from the geologic map are plotted in dark in 
Figs. 23 – 27. 

According to the Hamming distance, the closest results to the geologic map are the results provided by PNN 
models 2, 4 and 8; the most differences are found for results from PNN models 1, 10 and 15. Special attention 
can be drawn to the results from PNN model 20. The southeast corner (where samples are absent) was not 
classified by this method, so this corner contributes a lot to the Hamming distance (see Figure 24b).  However, 
the Hamming distance between the result of PNN model 20 and the geologic map is not the worst one. After 
cutting this south corner (see rectangle in Fig. 24b) the Hamming distance decreases to 9.12% (3678 pixels from 
40329). So, this model is good, too. 

After looking at all comparisons that were made (accuracy test, testing on a subset of data, visual and 
quantitative comparison with a priori geologic map), two PNN models can be selected as the “best”, models 8 
and 20, and thus preferable for usage.  Three PNN models can be marked as non-preferable for usage (models 3, 
10 and 15). These models have parameters that are much different from the parameters of the other models and 
from the geologic interpretation: models 3 and 15 present a different orientation of kernel ellipse, while model 
10 has a different correlation between σX and σY.  

So, for further usage a set of PNN models 1, 2, 4, 5, 6, 8 and 20 are proposed. 



 

 18

 
Table 5. Hamming distance between a priori geologic map and PNN predictions 

k σX σY Orientation 
(in 

degrees) 

Number of 
differences 
(in pixels) 

Measure of 
difference 

 (in %) 
20 77.265 407.958 41 4553 10.98 
15 364 131.138 164 5892 14.21 
10 77.265 1054.34 32 5793 13.98 
8 114.603 488.64 33 4028 9.72 
6 116.531 730.382 33 4426 10.68 
5 77.26 609.952 31 4900 11.82 
4 111.301 527.423 19 4131 9.97 
3 260.566 566.119 0 4196 10.12 
2 112.884 488.967 20 4057 9.79 
1 129.607 499.166 22  6669 16.1 

 
Table 6. Hamming distance between a priori geologic map and PNN predictions per class 

k σX σY Orientation 
(in 

degrees) 

Class1 Class2 Class3 Class4 Class5 

20 77.265 407.958 41 3094 722 124 553 60 
15 364 131.138 164 3870 666 302 748 306 
10 77.265 1054.34 32 4014 689 325 660 105 
8 114.603 488.64 33 2570 677 113 602 66 
6 116.531 730.382 33 3024 655 138 579 30 
5 77.26 609.952 31 3301 673 216 652 58 
4 111.301 527.423 19 2382 692 224 712 121 
3 260.566 566.119 0 2283 667 470 603 173 
2 112.884 488.967 20 2329 692 210 707 119 
1 129.607 499.166 22  4608 682 297 744 338 

 

a)  b)  

Fig. 23. Zones of difference between a priori geologic map and U1 zonation by PNN models 1 (a) and 2 (b).  
Areas of difference are dark  
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a)  b)  

Fig. 24. Zones of difference between a priori geologic map and U1 zonation by PNN models 3 (a) and 4 (b) 
Areas of difference are dark 

 

a)  b)  

Fig. 25. Zones of difference between a priori geologic map and U1 zonation by PNN models 5 (a) and 6 (b) 
Areas of difference are dark 
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a)  b)  

Fig. 26. Zones of difference between a priori geologic map and U1 zonation by PNN models 8 (a) and 10 (b) 
Areas of difference are dark 

 

 
Fig. 27. Zones of difference between a priori geologic map and U1 zonation by PNN models 15 (a) and 20 (b) 

Areas of difference are dark 
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3.3. Comparison of spatial correlation structure 
Another possible approach is to compare class indicator variograms of the results obtained from PNN with the 
class indicator variograms of the geologic map (see Figs. 3 – 5). The class indicator variograms can be used to 
examine the correspondence of the spatial correlation structure: anisotropy, level of class variability, etc.  

In the current work, the first attempt to compare results using class indicator variogram roses is presented. 
For comparison we selected the 4 most characteristic PNN results (different and presenting all the main areas of 
variation): PNN2 and PNN3 both good according to comparison tests but with different kernel ellipse 
orientation; PNN10 the one with the strongest difference between kernel bandwidths in perpendicular directions 
(and as the result very long and thin areas for classes 2 and 3) and PNN15 as one absolutely different from the 
others. Variograms for PNN estimates are calculated for the same lags and directions as the variograms for 
expert’s geologic map. Class indicator variogram roses for results provided by these models are presented below 
in Figs. 28 – 32. Based on visual comparison of class indicator variograms the following conclusions can be 
made: 

1. PNN2 provides the best correspondence with geologic map class indicator spatial correlation structure 
among these four results. 

2. PNN3 has a structure that is too isotropic for small lags. 
3. PNN10 always provides too strong an anisotropy. 
4. PNN15 is not bad according to class indicator spatial correlation structure. 
5. The main orientation of the anisotropy seems to be the same as for geologic map. But the values differ.  

Quantitatively, for class 2, indicator variogram values of PNN classification results are lower then indicator 
variogram values of geologic interpretation. For classes 3, 4 and 5 on the contrary, the indicator variogram 
values of PNN classification results are higher than indicator variogram values of geologic prediction.  Such 
type of comparison of the results is useful, but the problem is that we again deal with some kind of visual (not 
formal) comparison. To perform more formal class indicator variogram comparison a special RMSE index for 
indicator class variogram was introduced. This index is calculated by the formula: 

 ( )2
__

1 ∑ ∑ −=
directions lags

methodItypeI
DL NN

Index γγ , (1) 

where NL is number of lags, ND is number of directions, γI_type is value of class indicator variogram for a priori 
geologic map and γI_method is value of class indicator variogram for result of a method estimated for the same lag 
and direction as γI_type.  The summation is made for the whole set of lags and directions, where variogram values 
are estimated. In fact, this index can be considered as a distance between variograms. 

The results of the index calculations for predictions of the different PNN models are summarized in Table 7. 
The results show good correspondance of PNN indicator variograms with indicator variograms of expert’s map 
(small values of index). The worst coincidence shows the PNN10, which is not good according to all 
characteristics. 

 
Table 7. RMSE class indicator variogram index for predictions of different PNN models 

Metho
d 

Class1 Class2 Class3 Class4 Class5 

PNN2 0.017 0.011 0.016 0.01 0.006 
PNN3 0.017 0.009 0.008 0.01 0.007 

PNN10 0.04 0.011 0.032 0.025 0.004 
PNN15 0.014 0.011 0.013 0.01 0.005 
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Fig. 28. Class indicator variogram roses (class1) for results of different PNN models 

 

 

 
Fig. 29. Class indicator variogram roses (class2) for results of different PNN models 
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Fig. 30. Class indicator variogram roses (class3) for results of different PNN models 

 

 
Fig. 31. Class indicator variogram roses (class4) for results of different PNN models 
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Fig. 32. Class indicator variogram roses (class5) for results of different PNN models 

 

4. Multilayer perceptron for U1 zonation 

The performance of an MLP for a multiclass classification task is presented below. The posterior probability of a 
class in our case is an internal product of MLP – the first part of an output: 

 i|X)(yP(g(X,W))s esti == . 

And inserted in the MLP classification rule, this provides the final output: 

 [ ]θ−= )),(()( WXgsIXf i , 

where s(t) is a usual logistic sigmoid, g(t) is the parametrizing of current MLP output, X is a training data set of 
size N, W is a set of MLP links’ weights,θ is the classification threshold and I(ti) is a function identifying the 
number (class) providing the maximum ti. It was proven [3] that first part of MLP output (si(g(X,W))) trained to 
minimize the empirical risk objective function are the probabilities under a number of constraints:the set X is 
composed of independently and identically distributed samples; training size is statistically large enough; global 
minimum of empirical risk function is achieved. Proposing such constraints to be satisfied we can treat these 
outputs as class probabilities. In our case the independence of samples is not satisfied, so we need to treat the 
output of MLP as a probability very carefully.  

For the current classification task, several MLP’s with different architectures were used. Most of the MLP’s 
had 1 hidden layer with 3, 5, 7, 8, 9 or 10 hidden neurons. Also, two different MLP’s with 2 hidden layers with 
5 hidden neurons in each were tried. All these MLP’s have 5 outputs, each producing the probability of a class 
(a value treated as a probability). The final problem is to assign a location to a certain class, so these 5 outputs 
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were generalized into one output providing the class winner. This solution is made based on the maximum class 
probability passing the probability threshold. 

Training was performed using a weighted cost function with two types of weighting.  
1. The first type of weights was obtained based on the number of class members (weight was inversely 

proportional to the class size). These weights, after normalization to a sum of 1, are presented in 
Table 8.  

2. Another type of weights was based on additional soft information – the sample confidence. One 
MLP without a weighted cost function was used as well.  

Results of accuracy tests for the different MLP’s are summarized in Table 9. Results of U1 zonation by 
different MLP models are presented in Figs. 33 – 41. The results obtained are very different from one another, 
reflecting the flexibility of the MLP algorithm. 

 
Table 8. Weights of class members for MLP training 

Class Size Weight 
Gravel 1 (1) 165 0.001212 
Gravel 2 (2) 6 0.033333 
Gravel 3 (3) 43 0.004651 

Sand (4) 15 0.013333 
Silt (5) 1 0.200000 

 
Table 9. MLP accuracy test results 

Number of model MLP architecture Type of weights Number of misclassifications Error (%) 
1 2-3-5 Class size 32 13.91 
2 2-5-5 Class size 26 11.3 
3 2-7-5 Class size 16 6.96 
4 2-8-5 Class size 25 10.87 
5 2-9-5 Class size 19 8.26 
6 2-10-5 Class size 23 10 
7 2-5-5-5 Class size 3 1.3 
8 2-5-5-5 NONE 1 0.43 
9 2-9-5 Confidence 5 2.17 

10 2-10-5 Confidence 8 3.48 
 

a)  b)  

Fig. 33. U1 zonation by MLP models 1 (a) and 2 (b) 
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a)  b)  

Fig. 34. U1 zonation by MLP model 3: classes (a) and the class winner probability (b) 
 

a)  b)  

Fig. 35. U1 zonation by MLP model 4: classes (a) and the class winner probability (b) 
 



 

 27

a)  b)  

Fig. 36. U1 zonation by MLP model 5: classes (a) and the class winner probability (b) 
 

a)  b)  

Fig. 37. U1 zonation by MLP model 6: classes (a) and the class winner probability (b) 
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a)  b)  

Fig. 38. U1 zonation by MLP model 7: classes (a) and the class winner probability (b) 

 

a)  b)  

Fig. 39. U1 zonation by MLP model 8: classes (a) and the class winner probability (b) 
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a)  b)  

Fig. 40. U1 zonation by MLP model 9: classes (a) and the class winner probability (b) 

 

a)  b)  

Fig. 41. U1 zonation by MLP model 10: classes (a) and the class winner probability (b) 
 

The comparison of MLP models presented above can be made based on 2 aspects – accuracy test error and 
similarity to the a priori geologic classification map. Zones of difference between MLP classification results and 
the geologic map are presented in Figs 42 – 46. 

According to the accuracy test results for MLP with 1 hidden layer, using class size as weights for cost 
functions during training are worse than using the sample confidence data, and among them the worst are the 
results of models 1, 2 and 4. They also visually differ stronger from the geological classification – all patches of 
the U1 facies are too thick and round (see Figs. 33 – 37 and 43, 45, 46). 

Using sample confidence data (models 9 and 10) improves the results of accuracy test and the resulting 
figures look more like the a priori map, and they have no penetration of class 4 among classes 2 and 3 (see Figs. 
40, 41 and also 42 and 46). However, they do not reproduce the long zone of class 4 along the border in the 
north, which can be seen in the results of MLP with 2 hidden layers – models 7 and 8 (see Figs. 38, 39 and 44). 
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The quantitative aggregated measure of zero dimension (the number) of the difference between MLP 
classification results and geologic map (Hamming distance) is presented in Tables 10 and 11, the general 
difference and number of pixels of a class in geologic map assigned to any other class by a model 
correspondingly. According to the Hamming distance, the models that are closer to the geological information 
are MLP models 7, 8, 9 and 10. The results that are most distant from the geologic map are the results of MLP 
models 1, 2 and 4. Here we see high correspondence between the results of the accuracy test and the similarity 
with the a priori geologic map. 

Table 10. Hamming distance between a priori geologic map and MLP predictions 
Model 
number 

MLP 
architecture 

Weighting Number of 
differences 
(in pixels) 

Measure of 
difference 

 (in %) 
10 2-10-5 confidence 3872 9.34 
6 2-10-5 class size 6660 16.07 
1 2-3-5 class size 10058 24.26 
2 2-5-5 class size 10461 25.24 
7 2-5-5-5 class size 3989 9.62 
8 2-5-5-5 none 3702 8.93 
3 2-7-5 class size 7452 17.98 
4 2-8-5 class size 9175 22.13 
9 2-9-5 confidence 3321 8.01 
5 2-9-5 class size 6862 16.55 
Table 11. Hamming distance between a priori geologic map and MLP predictions per class 

Model 
number 

MLP 
architecture 

Weighting Class1 Class2 Class3 Class4 Class5 

10 2-10-5 confidence 2503 683 197 361 128 
6 2-10-5 class size 5842 564 56 198 0 
1 2-3-5 class size 9143 258 58 408 191 
2 2-5-5 class size 9508 572 279 94 8 
7 2-5-5-5 class size 2514 652 148 374 301 
8 2-5-5-5 none 1817 565 67 837 416 
3 2-7-5 class size 6043 770 87 552 0 
4 2-8-5 class size 8252 480 105 338 0 
9 2-9-5 confidence 1182 859 211 1054 15 
5 2-9-5 class size 5977 616 86 165 18 

 

a)  b)  

Fig. 42. Zones of difference between a priori geologic map and U1 zonation by MLP 2-10-5 trained with 
weights according to confidence (a) and class size (b). Areas of difference are dark 
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a)  b)  

Fig. 43. Zones of difference between a priori geologic map and MLP 2-3-5 (a) and MLP 2-5-5 (b) trained with 
weights according to class size. Areas of difference are dark 

 

a)  b)  

Fig. 44. Zones of difference between a priori geologic map and MLP 2-5-5-1 trained with weights 
corresponding to class size (a) and without weights (b). Areas of difference are dark 
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a)  b)  

Fig. 45. Zones of difference between a priori geologic map and MLP 2-7-5 (a) and MLP 2-8-5 (b) trained with 
weights corresponding to class size. Areas of difference are dark 

 

a)  b)  

Fig. 46. Zones of difference between a priori geologic map and MLP 2-9-5 trained with weights according to 
confidence (a) and class size (b). Areas of difference are dark 

Four characteristic MLP models were selected for comparison of the class indicator variograms: MLP1 (2-8-
5) – rather low MLP, not too good according to all tests, but the best among poor models and MLP2 (2-5-5-5), 
MLP3 (2-5-5-5) and MLP4 (2-9-5) – all showing good results according to previous tests, but trained using 
different goal functions (weighted according to class size, not weighted and weighted according to sample 
confidence, respectively). The class indicator variogram reproduction for different MLP models are rather 
peculiar – each MLP model looks as if it is correctly oriented for only one class – for example MLP1 looks very 
good for class2, MLP2 looks good for class1 and not bad for class5, MLP3 looks very good for class4 and 
MLP4 looks good for class3.  

RMSE index values for the class indicator variograms are summarized in Table 12. 
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Table 12. RMSE index for class indicator variograms of MLP results  

Metho
d 

Class1 Class2 Class3 Class4 Class5 

MLP1 0.12 0.007 0.04 0.062 0.019 
MLP2 0.022 0.012 0.011 0.03 0.0028 
MLP3 0.009 0.0065 0.011 0.009 0.008 
MLP4 0.018 0.018 0.006 0.013 0.011 

 

 
Fig. 47. Class indicator variogram roses (class1) for results of several MLP models 
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Fig. 48. Class indicator variogram roses (class2) for results of several MLP models 

 

 
Fig. 49. Class indicator variogram roses (class3) for results of several MLP models 
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Fig. 50. Class indicator variogram roses (class4) for results of several MLP Models 

  

 
Fig. 51. Class indicator variogram roses (class5) for results of several MLP models 
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5. Support vector machine for U1 zonation 

The U1 zonation task is a 5-class classification problem. The original SVM was developed for binary 
classification problems. We examined several approaches to generalize the Support Vector Machines approach 
for multi-class problems. 

As SVMs are originally constructed as binary classifiers, most of the multi-class extensions are based on 
some scheme that combines several binary classifiers into one multi-class classifier. By using this approach, 
SVMs lose some of their theoretical foundations; nevertheless such schemes are both flexible and easy-to-use. 
The most widely used are:  

• “One-against-rest”:  to obtain M-class classifier we train M binary classifiers to classify each class 
against all other data, and then combine. 

• “One-against-one”:  to obtain M-class classifier we train M(M-1)/2 binary classifiers, one for each 
pair of classes, and then combine. 

The usual way of combining the binary classifiers is the following. Let the output of every m classifier be  
)),(( )()()()( m

i
m

i
i

m
i

m bxxKysigny += ∑ α  

Then for “one-against-rest” scheme we can take the classifier that has maximal decision function: 
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m
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i

m
i

m
bxxKyy += ∑ α  

and for “one-against-one” scheme we have to use some voting procedure to choose a classifier from the pair-
wise competition.  

5.1. Classical SVM 
We start from the “pure” SVM model, without taking into account the data confidence or expert’s map as 
auxiliary data. Three approaches to the M-class problem will be presented:  

generalization of the binary classification prolem to the multiclass classification by  
• “one-against-rest” model,  
• ”one-against-one” model,  

and the generalization of the binary classification to the current specific multi-class problem.  

5.1.1. One-against-rest. 

As the number of points in classes 2, 4, and 5 is not sufficient to obtain the representative training and testing 
subsets, the parameters for these classes can be taken from cross-validation error analysis (that is also quite 
complicated) or heuristically. The heuristics are: the parameters should correspond (be similar) to the parameters 
for the other classes (classes1 and 3).  

Parameters for classes 1 and 3 were selected based on the standard procedure, with several test subsets 
selected.  

The class 1 testing error surface demonstrates typical behavior for the SVM model when optimal parameters 
are “proportional” to each other. The class 3 error surface is different: there is a large region of low (almost 
zero) testing error. This is because of the class 3 spatial distribution and the absence of regions of overlap with 
other classes. However these surfaces can give just a rough estimate of the parameters, since the final result 
mostly depends on the combination of binary classifiers.  

For this “one-against-rest” method it is evident that parameter C has very significant influence: it defines the 
limits for the coefficients/weights, hence it influences the amplitude of the decision functions being compared. 
Generally, the outputs of the classifiers should be comparable and the parameters should not be very different.  

The parameters suitable for the “one-against-rest” method are gathered in Table 13. The final U1 zonation by 
an SVM trained by the one-against-rest approach using those parameters is presented in Fig. 52. 

 
Table 13. Parameters of SVM “one-against-rest” 

 Class 1 Class 2 Class 3  Class 4 Class 5 
RBF kernel 
sigma 

5920 5920 5550 5920 5920 

C parameter 100 300 300 100 300 
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Fig. 52. U1 zonation by SVM one-against-rest classification  

 

 
Fig. 53. U1 zonation by SVM one-against-one classification 

5.1.2. One-against-one. 

“One-against-one” scheme is the most flexible and the hardest to tune among the schemes being presented. 
However, it was noticed that it gives a very “ordinary” result, similar to the other methods. The same 
observation was made in some other multi-class classification tasks.  

The lack of data for classes 2, 4, and 5 is also a problem for the “one-against-one” generalization scheme. 
Nevertheless, it is possible to obtain reasonable parameters for each pair of classes. Some pairs of classes allow 
building test error surfaces, the standard approach, while some classes must be tuned by heuristics. As the RBF 
kernel parameter (bandwidth) corresponds to some average range of influence of the class members, its values 
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should be: 1) comparable with the size of the region “occupied” by the corresponding class, and 2) comparable 
with the kernel bandwidth of the neighbor class. Another useful heuristic is the expected shape of the decision 
boundary: the larger the RBF kernel bandwidth, the smoother the boundary. Some classes (for example, class 5 
and class 2) probably don’t have a common boundary at all and can be tuned quite roughly.  

We will not stress the parameter tuning procedure, and mainly present the final classification result – Fig. 53. 

5.1.3. “Pseudo-binary” approach. 

As previously mentioned, the disadvantage of the generalization schemes described above is that SVM loses 
some of its nice properties, including some of its generalization ability. Binary SVM builds a separating hyper-
plane with maximal margin in a feature space, giving rise to a good generalization. By combining several SVMs 
we lose this property. Although there are some theoretical extensions to “multi-class margins”, their applications 
to real tasks are still too complicated to be well understood.  

An easy way to overcome these difficulties is to use an approach based on the evident structure of the data. 
In the case study of interest, it is possible to solve the multi-class task by mainly dealing with one binary 
problem: by classifying class 1 against the rest data. Then there are two binary problems left: to classify class 4 
against class 5, and class 2 against class 3. One point belonging to class 5 (near class 2 boundary) can be 
considered as an outlier and omitted. The rest of the classification boundaries are already obtained. The main 
advantage of this scheme is that it is mostly binary, and hence keeps the good (theoretically founded) 
generalization abilities of SVM.  

The main step, class1-against-rest classification is already performed during “one-against-rest” study. The 
other necessary steps, 4-aganst-5, and 2-against-3, were performed during the “one-against-one” study.  The 
figure 54 demonstrates prediction classification mapping for these preliminary tasks. 

Because the classification boundaries for the 2-against-3 task depend significantly on the kernel in the 
“extrapolation” region, they are almost identical in the region of interest. Classification 4-against-5 is almost a 
degenerate task since class 5 consists of only 1 data point. This particular classification is not presented on the 
figures. The combination of the binary classifiers in Fig. 54 resulted in the final classification presented on Fig. 
55. 

5.1.4. Preliminary discussions 

Three multi-class SVM methods that can be used for the given task were considered: general and wide-used  
“one-against-rest”, “one-against-one” and specific for this data “pseudo-binary”. The advantages and 
disadvantages of all the methods were mentioned before. Concerning the prediction classification we can 
conclude that there is no significant difference in the result. The only significant difference between the results 
of the 3 methods is in class 5 classification, since it consists of only one point.  

5.2. Incorporation of the confidence data 
 Some confidence values were provided for every measurement by Hanford Site geologists (see Fig. 1b). To 
incorporate this knowledge into the SVM model, the C parameter is taken individually for every point; the 
measurement with confidence value k has C/k as a parameter. Since the value of this parameter is an upper 
bound of the weight that the corresponding point has, the more confidence we have in the measurement, the 
more influence it will have on the solution. The C value itself can be tuned by standard methods.  

Since we significantly change the model by incorporating the confidence data, all the parameters have to be 
re-tuned. The results are two-fold: confidence information incorporation leads to a more stable region of 
minimal testing error, but the maximal testing error increased significantly. Here we consider only the results of 
the “one-against-all” SVM classification. The “pseudo-binary” classification gave almost the same result.  

The results are presented in the Figure 56. As a rule, points that were misclassified tend to have a low 
confidence level. Incorporation of the confidence data resulted in the existence of a larger region occupied by 
class 5. 
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Fig. 54. Sub-tasks for “pseudo-binary” approach. Top-left: class 1(light)-against-rest(dark). Other: different 

classification of 2(dark)-against-3(light). Small empty circles correspond to data 
 

 
Fig. 55.U1 zonation by SVM  “Pseudo-binary” classification 
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Fig. 56. U1 zonation by SVM one-against-rest classification using the confidence information   

5.3. Comparison of different SVM models 
The following conclusions can be made: the incorporation of the confidence information has led to a more 
extensive region of low testing error in the space of model parameters, but did not lead to a decrease in the value 
of the errors. At the same time the value of maximal testing error increased. The mapping results are almost 
unchanged for most of the classes (2, 3, upper part of 4), and changed for the classes with a lower number of 
data points: class 5 and the lower region occupied by class 4.  These changes also led to changes in the 
occurrence of class 1, which occupies most of the study area. 

According to the Hamming distance between the SVM classification and the a priori geologic map (see 
Tables 14 and 15) the confidence information used by SVM did not improve the results. This may be because 
the incorporation of the confidence data leads to a more complicated model.  

Zones of difference between the results of the SVM predictions and the geologic map are presented in Fig. 
57. 

There appears to be no significant difference between the 2 types of SVM generalization to yield a multiclass 
classifier. Currently, the main problem with SVM is the absence of a probabilistic interpretation for the method.   
 

Table 14. Hamming distance between a priori geologic map and SVM predictions 
Type of generalization Weighting Number of 

differences 
(in pixels) 

Measure of 
difference 

 (in %) 
ONE-AGAINST-REST NONE 2327 5.61 
ONE-AGAINST-ONE NONE 2620 6.32 
ONE-AGAINST-REST confidence 3539 8.54 

 
Table 15. Hamming distance between a priori geologic map and SVM predictions per class 

Type of generalization Weighting Class1 Class2 Class3 Class4 Class5 
ONE-AGAINST-REST NONE 857 785 133 295 257 
ONE-AGAINST-ONE NONE 801 814 74 757 174 
ONE-AGAINST-REST confidence 1882 723 224 612 98 
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a)  b)  

c)  

Fig. 57. Zones of difference between a priori geologic map and SVM with different generalization to multi class 
classification: one-against-rest (a), one-against-one (b) and one-against-rest with confidence (c). Areas of 

difference are dark 
 
The three models provided by the SVM approach were analyzed using class indicator variograms. They were 

called SVM1 – one against rest multiclass generalization, SVM2 – one against one multiclass generalization, 
and SVM3 – one against rest multiclass generalization using confidence data. All three types of SVM show very 
good correspondence with class variograms generated from the results of that method and with the class 
indicator variograms generated from the a priori geologic classification. The main problem is with class 5 where 
the anisotropy orientation for small lags is shifted. Corresponding class indicator variogram roses are presented 
in Figs. 58 – 62. Class indicator variogram RMSE indexes for the SVM prediction models are presented in 
Table 16. 

Table 16. RMSE for class indicator variograms of SVM predictions 
Metho
d 

Class1 Class2 Class3 Class4 Class5 

SVM1 0.017 0.015 0.004 0.001 0.0015 
SVM2 0.016 0.016 0.006 0.0096 0.004 
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SVM3 0.02 0.013 0.003 0.005 0.019 
 

    
Fig. 58. Class indicator variogram roses (class1) for results of several SVM models 

 

   
Fig. 59. Class indicator variogram roses (class2) for results of several SVM models 

   
Fig. 60. Class indicator variogram roses (class3) for results of several SVM models 
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Fig. 61. Class indicator variogram roses (class4) for results of several SVM models 

   
Fig. 62. Class indicator variogram roses (class5) for results of several SVM models 

6. Indicator approach for U1 zonation 

The first step of any indicator method’s application is an indicator transform of the data. The indicator transform 
for categorical data is defined as: 
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Results of the indicator transform of the hard U1 zonation data data are presented in Fig. 63. The standard 
indicator transform cannot be used for class 5, as this class has only one member.  Class 5 can’t be analyzed by  
geostatistical indicator methods because the spatial correlation structure of the class is impossible to estimate 
with only one sample, and modelling of the spatial correlation structure is the key step in all geostatistical 
analysis. To be able to include class 5 in the indicator based geostatistical analysis the a priori geologic 
information was used as a proxy. The class 5 members from the geologic classification map were inserted into 
the raw database (see Fig. 64a) and the indicator transform for class 5 was performed using that amended dataset 
(see Fig. 64b). 

6.1. Indicator kriging for U1 zonation 
Results of class indicator variogram modeling are presented in Figures 65 – 69. We present the raw variogram 
roses, model variogram roses (to compare the reproduction of spatial anisotropy by the model, if any) and 
directional 1D graphs (to see the reproduction of directional variograms).  

Parameters of the fitted variogram models are summarized in Table 17. In this table, range 1 orresponds to 
the range in the main anisotropy direction and range 2 is the range in the direction perpendicular to the main 
direction. The orientation is measured in degrees from the X axis in the counterclockwise direction. The 
indicator variogram for class 5 was constructed based on class 5 members from a priori geologic classification 
result, as described above. Thus, “soft” geologic data was used for estimating the range and anisotropy direction 
of class5. 

The results of U1 zonation by indicator kriging are presented in Fig. 70.  The accuracy test of the indicator 
kriging results indicates no misclassifications, which results from the exactitude property of kriging. The lack of 
any misclassifications could lead to suspicion that overfitting of the data had occurred, but the rather wide zones 
of uncertainty cause us to reject that proposition (see Fig. 70b). 

 
Table 17. Parameters of class indicator variogram models 

 Model Nugget Sill Main direction Range 1 Range 2 
Class 1 SPHER 0. 0.27 150 21870 8023 
Class 2 SPHER 0. 0.023 130 8050 2289 
Class 3 SPHER 0. 0.16 140 12080 2906 
Class 4 SPHER 0. 0.052 120 20860 8870 
Class 5 GAUSS 0. 0.38 150 48520 15240 
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Fig. 63. Indicator transform for U1 zonation. Dark cells indicate class presence 

a)  b)  

Fig. 64. Hard information on U1 zonation + soft information on class5 positioning (a) and indicator transform 
of amended dataset for class 5 (b) 
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a)  b)  

c)  

Fig. 65. Class 1 indicator variogram modeling: raw variogram rose (a); variogram rose model (b) and 1D 
variogram modeling (c)  

 

a)  b)  
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c)  

Fig. 66. Class 2 indicator variogram modeling: raw variogram rose (a), variogram rose model (b) and 1D 
variogram modeling (c) 

 

a)  b)  

c)  

Fig. 67. Class 3 indicator variogram modeling: raw variogram rose (a), variogram rose model (b) and 1D 
variogram modeling (c)  
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Fig. 68. Class 4 indicator variogram modeling 

 

a)  b)  

c)  

Fig. 69. Class 5 indicator variogram modeling: raw variogram rose (a), variogram rose model (b) and 1D 
variogram modeling (c)  
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a)  b)  

Fig. 70. U1 zonation by indicator kriging: classification (a) and probability of the class winner (b) 

6.2. Indicator simulations for U1 zonation 
Indicator simulations were performed using the class variogram models constructed in section 6.1. Fifty 

sequential categorical indicator simulations were generated. The most probable class at each location was 
calculated from the indicatior simulations by the following procedure: 

1. On the basis of N realizations the probability of each class was estimated. The maximum probability is 
presented in a Fig. 71b. 

2. The class is estimated as the class winner according to the class that has the maximum probability. 
Such “maximum-probability” estimates of the class types over 50 realizations provides results very similar to the 
results provided by indicator kriging (compare Figs. 70 and 71). The main difference is in the probabilistic 
interpretation – the uncertainty map generated from the simulations has wider uncertainty bands than were found 
for indicator kriging (compare Fig. 71b and 70b). Perhaps it is caused by non-stability of class proportions in the 
realizations. In the current set of realizations we found very high variability of class2 proportion in realizations – 
range of proportions was from 0.024 to 0.11 (mean value 0.048, standard deviation 0.02). Others classes also 
showed non-stability, but not of such order. The other problem with class 2 was appearance of it in realizations 
in unexpected locations (even where other class was measured and no signs of class2 were detected).  

After different investigations we found that the main source of unstable behavior of the realizations was the 
choice of variogram models and search radii used for the simulations.  In particular, large ranges and 
consequently search radii appeared to cause the major problem. Changing only variogram model for class 2 led 
to an increase of proportion variability of the other classes. So, the variogram models (for all classes) were 
significantly changed. New class indicator variogram parameters are summarized in Table 18. The difference 
can be observed comparing parameters from Tables 17 and 18. The main changes performed upon variogram 
parameters can be formulated as follows: 

• Ranges were significantly decreased – some of them up to 3 times; 
• For classes 2, 4 and 5 omnidirectional models were selected; 
• The main direction for anisotropic classes was chosen the same, to simplify the determination of 

search area. 
 

Table 18. Updated parameters of class indicator variogram models  
 Model Nugget Sill Main direction Range 1 Range 2 
Class 1 SPHER 0. 0.25 150 17520 3874 
Class 2 SPHER 0. 0.033 omni 3762  
Class 3 SPHER 0. 0.19 150 10040 4614 
Class 4 SPHER 0. 0.04 omni 7863  
Class 5 SPHER 0. 0.35 omni 16980  
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a)  b)  

Fig. 71. U1 zonation by determining the most frequently simulated class for the suite of 50 sequential indicator 
simulations: classes (a), probability of the class winner (b)  

 
New variogram models were first used to estimate the probability of each class (one class against all – binary 

stochastic simulations). Stochastic simulations were used instead of indicator kriging, which might be 
traditionally used for that purpose, because indicator kriging provided reasonable results for the original 
variogram models: 

• no misclassifications in the accuracy test; 
• very natural looking prediction on the grid. 

All unexpected fluctuations appeared in single realizations. Results of probabilities calculated for classes from 2 
to 5 on the base of 20 realizations of binary stochastic indicator simulations are presented in Fig. 72. The results 
seem to be reasonable. Spots of high probability appear in locations where real measurements indicate the 
presence of the same class.  

So, the new class indicator variogram models were used for the generation of categorical stochastic indicator 
simulations. The other parameters important for simulations are the following: 

• Search area is anisotrophic with main direction 150 degrees and search radius 10000 and 5000 m 
(reduced in comparison with preliminary set of simulations). 

• The number of neighbors taken into account for estimation was reduced to 10 samples and 5 simulated 
points. 

• Ordinary kriging was used instead of simple recommended in the theory. In reality the case is not 
stationary – classes 2, 3 and 5 are presented each by a spot, class4 is presented by 3 spots. The only 
class really distributed over the whole area is class 1. In such situation a priori pdfs used as mean for 
simple kriging do not reflect correctly local situations. Ordinary kriging provides more reliable local 
estimate. 

The mean class proportions for 100 realizations, together with standard deviation and the values selected as 
proportions to be used in simulations using simple kriging (after some declustering analysis) are presented in 
Table 19. Small values of standard deviations indicate that there is no strong variability of proportions between 
realizations. Also obtained proportions seem to correspond more closely with the expected values. 

 
Table 19. Mean proportions of 100 new realizations 

 Mean proportion Sigma of proportion Expected proportion 
Class 1 0.846 0.0086 0.85 
Class 2 0.018 0.0015 0.04 
Class 3 0.056 0.0065 0.05 
Class 4 0.071 0.0036 0.048 
Class 5 0.009 0.0057 0.012 
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Six realizations are presented as examples in Figure 72. The proportions of classes provided by these 
realizations are collected in Table 20. It can be seen that proportions really do not show fluctuations. But it can 
be remarked that mean proportion of class 2 is underestimated, while the proportion of class 4 is overestimated. 
This variation should be evaluated in a more detailed analysis. 

Realizations present lots of single points of a class surrounded by another class. This can be caused by some 
kind of overfitting because of reduced variogram ranges. However, the same situation is mentioned in [4], and 
commonly occur in stochastic simulations of categorical indicators. The pattern generated by the realizations is 
unlikely to reproduce correctly the real geologic situation, because changes in geologic class would not be 
expected to be so sharp. So the simulation smoothing algorithm suggested by Deutsch [4] was employed – the 
class at each simulated location was based on the most frequent class found in the 12 surrounding nodes. The 
results of this smoothing (for the same 6 realizations) are presented in Figure 73. The patterns of the processed 
simulations are much smoother, with classes showing better connections and the class proportions are more 
stable (see Table 21).  
 

 
Fig. 72. Class probabilities obtained based on binary stochastic simulations 
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Fig. 73. First 6 realizations provided by categorical indicator simulation procedure 

 
Table 20. Proportions of 6 first realizations 

Realization number Class 1 Class 2 Class 3 Class 4 Class 5 
1 0.84 0.02 0.065 0.072 0.008 
2 0.85 0.01 0.05 0.07 0.005 
3 0.849 0.02 0.058 0.07 0.005 
4 0.85 0.015 0.056 0.07 0.003 
5 0.845 0.017 0.058 0.07 0.009 
6 0.84 0.017 0.06 0.07 0.007 
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Fig. 74. First 6 realizations obtained during categorical indicator simulations after 12 neighbor smoothing 

procedure 

 
Table 21. Proportions of 6 first realizations after smoothing 

Realization number Class 1 Class 2 Class 3 Class 4 Class 5 
1 0.88 0.011 0.062 0.043 0.009 
2 0.9 0.012 0.048 0.037 0.005 
3 0.89 0.009 0.056 0.041 0.006 
4 0.89 0.01 0.052 0.041 0.003 
5 0.88 0.01 0.056 0.042 0.009 
6 0.88 0.01 0.057 0.045 0.007 

 
The main conclusions concerning the indicator stochastic simulations for U1 zonation problem: 
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• The main problem deals with real non-stationarity of data. Theoretically, geostatistical approaches were 
not developed for such conditions. Some localization performed during estimation, especially by the use 
of ordinary kriging during the simulations, allowed us to stabilize the results.  

• Smoothing procedures are required and need to be performed with attention. It is possible that the 
smoothing process should be adaptive – different for different areas and classes. 

• A priori geologic information can be important for such simulations – when there are too few members 
of classes (e.g., class 2 has few members, but is expected to have higher proportion). 

6.3. Comparison of indicator approach predictions with an a priori geologic map 
Results provided by the indicator approach (indicator kriging and ”maximum-probability” over 50 stochastic 
realizations) were compared the a priori geologic map. General Hamming distances and Hamming distances per 
class are presented in Tables 22 and 23, respectively. Zones of difference between the indicator based 
predictions and the a priori geologic map are presented in Fig. 75. 

Both indicator kriging and indicator simulation provide very good results, as indicated by the similarity to 
the a priori information. The zones of difference tend to occur in zones of uncertainty, as expected. 

 
Table 22. Hamming distance between a priori geologic map and indicator based predictions 

Method Number of 
differences 
(in pixels) 

Measure of 
difference 

 (in %) 
Indicator kriging 2892 6.98 

”Maximum-probability” 
for 50 realizations 

3205 7.73 

 
Table 23. Hamming distance between a priori geologic map and indicator based predictions per class 

Method Class1 Class2 Class3 Class4 Class5 

Indicator kriging 983 770 129 753 257 
”Maximum-probability” 

for 50 realizations 
1064 774 266 874 227 

 

a)  b)  

Fig. 75. Zones of difference between a priori geologic map and indicator kriging (a) and ”Maximum-
probability” after 50 indicator simulation realizations (b). Areas of difference are dark 
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7. Discussion and Conclusions 

The unit 1 zonation task was formulated as a multiclass classification problem. Multiclass modifications of the 
binary classification machine learning models discussed in section 1 were used to solve this problem. A set of 
soft information (a priori zonation, performed by Hanford Site geologists on the basis of the same samples and 
their expert knowledge of the region) was also used during analysis. For example, this soft data was used to 
estimate spatial correlation structure of the class with only 1 member among the sampled data. 

Different geostatistical and machine learning methods were presented and discussed for this task. It was 
observed that the machine learning methods provide very narrow zones of uncertainty (zone where probability 
of the class winner is below 0,8). This situation can be treated as overfitting, but in the current case it seems 
reasonable to assume that the distribution of classes is easy for non-linear machine learning classifiers given the 
available distribution of samples. 

One of the main problems that appeared during solving of this task was the low number of representatives in 
some classes (e.g., two classes had 6 or fewer sample data supporting them). A subset for validation and 
comparison of obtained results could not be extracted from this initial data set. This made it impossible to 
evaluate the results using standard methods. Several alternative evaluation approaches were proposed and used, 
but all of them have significant drawbacks. 
 Comparison on the base of the accuracy test. The accuracy test is based on the application of the trained 

model to the data it was trained on. The accuracy test allows us to estimate the error of trained data 
reproduction by a model. The test can show which model provides better result on the training data, but it 
does not allow us to compare a more significant aspect of the results of the machine learning methods – 
whether they can be generalized to new data. One needs to be careful using just the accuracy test for 
comparison of models – e.g., overfitted models do very well on the accuracy test. 

 Pseudo-validation can be performed on a validation subset constructed from the members of classes having 
sufficient number of representatives. But in the current case it is difficult to choose validation subsets even 
from prevailing classes, without encountering the possibility of distorting the boundaries.  

 Comparison can be made on the level of correspondence with a priori information. Here the main question 
is the confidence in the a priori information and how exactly it is expected to be reproduced. If it is exact 
knowledge, the only purpose of application of any other methods is to study their abilities. In the current 
case we deal with an a priori map, which is not exact, but is simply one possible interpretation of the 
geologic data.  Other experts given the same data would tend to draw different maps, with different 
boundaries for the classes, especially in areas where data are sparse. 

In spite of these disadvantages, all possible approaches to comparison of results were used. The most 
attention was paid to the qualitative and quantitative comparison with the a priori soft map. Qualitative 
comparison was based on the visual aspects of the result, such as: 

 Spatial orientation of main features (class zones); 
 Spatial sizes for different class zones in special orientations (for example, too long, too narrow, etc.). 

To perform reasonable qualitative comparison it is very important to carefully prepare all images: they need 
to be of the same size, colored according to the same scale, coordinate axes need to be the same and with same 
density.  

Quantitative comparison can be performed using some special indices. The simplest among them is the 
Hamming distance – it is the quantitative measure used for comparison of the images in this study. The 
Hamming distance indicates the measure of difference between two images that occupy the same pixels, and it 
can be measured in pixels (number of pixels which differ) or in the percent of different pixels. The number of 
differences per class can also be estimated.  

The comparison of estimation methods can also be performed using geostatistical tools, including the 
comparison of class indicator variograms. This method seems to be useful, but also has some problems: 
 If the a priori map is not correct, it may have a distorted spatial correlation structure for more distributed 

classes (for example, class 4, in the current case); 
 The comparison of class spatial correlation structure requires a great deal of work – each method is 

presented by several (5 in the current case) estimates of the spatial correlation structure – a set of 
directional variograms.   

 Variogram rose presentation can help in visualization of directional variograms and to simplify visual 
comparison of directional variograms. But again all images of the variogram roses need to be carefully 
prepared. It is especially important for comparison of continuous values, where the scale of the variogram 
rose needs to be carefully selected. 
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 Special quantitative indices can be used for variogram comparison. For example, one can use the traditional 
root mean square error (RMSE), where the differences between the two variograms being compared are 
treated as errors. 

Among the estimation methods, SVM gave good classification results. Currently the drawback of the method 
is the lack of an uncertainty measure for the estimate. This topic needs more advanced and basic research. 
Traditional approaches to derive confidence measures are usually based on i.i.d. hypotheses. Studies of special 
comprehensive simulations with artificial data may bring more understanding to the topic. 

Application of geostatistically based methods is significantly complicated by non-stationarity of the problem. 
Methods that allow one to re-estimate the local mean during simulation or estimation allow one to improve the 
situation and to obtain reasonable results. 

Nearly all methods provided reasonable results. But this comparison only allows us to check the main 
orientation of classes, basic forms, and the general similarity of obtained results to the geologic map. But the 
geologic result is itself only one of possible realizations, the main difference is that it was made using additional 
geologic knowledge of an expert geologist. All other obtained results can have the same interpretation. The 
expert with his experience can better select the best result and make the final classification solution.  

Some methods can be excluded from further consideration based on the results of testing of the methods 
presented in the current work: 

1. KNN – it provides too many misclassification errors. 
2. PNN with too different values of kernel bandwidth for the different directions – it produces a very 

anisotropic model with long and thin classes. 
3. PNN where the orientation of the kernel ellipse differs from other PNN models – they tend to change the 

main anisotropy of the pattern. 
4. MLP with 1 hidden layer trained using class size as a weighting coefficient in the cost   function. 

All other results can be presented for the expertise. 
In the present study the geological image was used as a reference map in order to compare models and their 

differences, and the Hamming distance was used for the comparison. Of course, it is not optimal because it is an 
aggregated index, but it gives a clear qualitative, and even quantitative, indication about the difference between 
models.  
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