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1 Introduction 

New allotropic forms of carbon such as fullerenes, fullerites, onion-like fullerenes and 
afterward carbon nanotubes, graphene, doped and endohedralfullerenes, have been 
discovered respectively recently [1]. Currently, those nanomaterials are considered as 
perspective materials in different areas of technology. The review of fullerenes’ physical 
properties and behaviour including fullerene ions under collisions with fullerenes and other 
particles is presented in the paper [2]. 

The ionizationcross-sectionsduring electron impact [3,4] or photoionization cross-sections 
[5] of neutral and positively or negatively charged fullerenesareobtainedintheliterature. It 
should be noted that due to big size of fullerene compared to ordinary atoms and molecules 
and due to large number of carbon atoms in fullerene, the direct quantum-mechanical 
calculations of these objects are extremely complicated and have alow accuracy and poor 
prediction ability. This is why some simplified model assumptions are necessary for the 
analysis of physical properties of fullerenes and fullerene ions. 

A number of investigators [6,7] successfully apply the so called “jellium” modelto 
qualitatively describe the physical parameters from experimental observations. The authors 
calculated the energy levels spectrum for C20 as well as for C60 molecules. For example, the 
lowest occupied electron energy level corresponds to about -44 eV while the highest 
occupied level equals approximately to -4 eV  in C20 neutral fullerene. In C60 neutral 
fullerene these levels are almost the same: -43 eV and -3.5eV respectively. In the paper [7] 
the potential of the well and the wave functions for fullerene C60 are calculated.A spherical 
electron gas model is applied as a simple model of C60 molecule to the optical scattering of 
electromagnetic wave on fullerene molecules [8]. 

The volume-localized electron levels (VLELs) existent due to Coulomb potential well 
inside positive ZC 

60  ion have been reported for the first time in [9]. To our knowledge, these 
electron levels located primarily inside the fullerene ion spheroid have not clearly mentioned 
in the literature yet. 

The system fullerene cation + electron and maybe neutral fullerene + electron can form the 
quantum coupled system similar to inverted nanoion (   eC Z

60 ) or nanoatom (   eC60 ). The 
electron is localized at discrete energy levels inside the charged sphere of fullerene cluster 
composed of carbon ions.This is due to unique geometrical form of fullerene cluster as a 
spheroid resulting in Coulomb potential well formation inside the fullerene. It could be said, 
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that due to this topology, the quantum VLELs are concentrated on the “wrong” side of 
fullerene sphere. 

At the same time, the ordinary surface-localized electron levels (SLELs) are typical for 
charged and neutral fullerene. Thus, concerning the impact of the electron beam with 
fullerene ions gas, the capture of free electrons is possible both to VLELs and SLELs energy 
levels. Also, the spontaneous transitions from VLELs to other VLELs and to SLELs could 
take place with simultaneous light emission. 

Inthepaper [10] theauthorsconductthecalculationsoffullerenesrecharge cross-sections 
within the bounds of standard recharge theory with tidy two-well symmetric potential. 
Thosecalculationsareinagoodagreementwithexperimentaldata. 

Thereisdirectexperimentalevidencethatfullereneiondegree (the number of positive 
elementary charges on a fullerene) mayreach the quantity of about +10.Forexample, 
theexperimentsareconsideredin [11], wherehigh-chargedfullereneionswereformed during 
ionization by electron beam. The ions were detected with positive charge corresponding up to 
6 elementary charges per particle.Inthepaper [12] theexperiments are reported, inwhichthe 
stable 12-foldfullerene ions were observed (12 elementary charges per particle) after 
irradiation of fullerene jet by strong infrared laser impulse. 

The fullerene ions are stable or meta-stable. For example, the authors of the paper [13] 
estimate numerically the characteristic ZC 

60  ion lifetime to be of the order of several seconds 
for Z<+11. However, according to this investigation, the dramatic lowering of fullerene ions 
lifetime by 10 orders of magnitude takes place when increasing Z from +11 to 
+13.Theionlifetimelongerabout 0.5 s is reported in the experimental work [11]. 

Atthesametime, theresultsofquantum-mechanicalcalculationsbydensity functional theory 
(DFT) [14,15,16] show that the meta-
stablefullereneionscanbeobtainedwithionizationdegreeuptoZ=+10. 

The study of optical and nonlinear optical properties of fullerenes and fullerene ions with 
different ionization degree Zincluding high Z is very important because those properties have 
not been fully analyzed up to now. Currently, this topic attracts many investigators 
throughout the world, see, for example, [17]. The fullerenes, onion-like fullerenes and 
carbonnanotubes (CNT) are very perspective materials, particularly, due to their unique 
geometry.The discovery of new unexpected phenomena of those nanomaterials is still 
anticipated in the future investigations.  

In this paper the simplified spherical model is used for qualitative and quantitative 
description of volume-localized electron levels existent due to Coulomb potential well inside 
positive ZC 

60  ion. 

The VLELs wave eigenfunctionsand the energy levels are investigated in the next Section. 
Then, in the Section devoted to the results of investigation, the electron capture cross-sections 
during recombination are calculated on the basis of standard quantum-mechanical methods. 
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Also, the main results of calculations of dipole moments for transitions from fullerene ions’ 
VLELs to other VLELs and to SLELs are presented. In the last subsection, the principal 
possibility of coherent radiation generation on fullerene ions VLELs is discussed. 

2 Materials and Methods 

We use for the analysis the simplified spherical model of fullerene. According to this 
model, the total positive charge of carbon ions of fullerene cluster and total negative charge 
of bounded and delocalized electrons are uniformly distributed on spherical surface of 
infinitesimal thickness. So, the quantum-mechanical problem allows the axial-symmetrical 
formulation. This assumption considerably simplifies the consideration of volume-localized 
electron levels in fullerene ion. 

Volume-localized Electron Levels of Fullerene Ion 

Let us find the electron wave functions corresponding to different energy levels in the 
potential produced by charged fullerene. We consider the ion ZC 

60 in the analysis. 

We suggest that except ordinary electron level states bounded with carbon ions (localized 
electron quantum levels) and states unified with a whole cluster (delocalized electron 
quantum levels) characteristic of neutral fullerene there exist another delocalized electron 
levels in fullerene ion due to the effective Coulomb field of charged fullerene. 

Indeed, within the bounds of this model the dependency of electron potential energy in a 
Coulomb potential of charged fullerene U(r) is presented in Figure 1 as an example. Here r is 
the distance to the centre of fullerene, Z – the charge of fullerene, e – the charge of electron, 
0 – the dielectric permeability of vacuum, rf – the radius of fullerene. 

The depth of potential well U0  is (see Figure 1): 

fr
ZeU

0

2

0 4
 .      (1) 

By insertingthe following valuesZ=+10, e1.6010-19C, 0  8.8510-12 C/(Vm),  rf3.5110-

10mintothisformulae, wegetU0  6.5710-18J 41.1 eV. 
Aslongasthedepthofthewellisdeepenough in comparison to the value 

 2
2

2 fe rm


 510-20J 0.31 eV, 

where 1.0510-34 kgm2/s–the reducedPlanckconstant, me0.9110-30kg – 
themassoftheelectron, 2rf– thecharacteristicsizeofthewell, then in this potential well a number 
of electron states exists which is much more than unity [18]. Note, that this conclusion is 
valid for every fullerene ion’s charge fromZ=+1 toZ=+10. 
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Figure 1: Simplified radial dependence of electron potential energy in Coulomb field of 
charged fullerene ZC 

60  . 

 

Despite the “jellium” or simplified sphericalmodel within which VLELs can be 
obtained is rather rough approximation, the existence of VLELs is not argued. In reality the 
resultant Coulomb field in fullerene ion is not spherically symmetric, it is modulated on 
anglesи(see Figure 2)correspondent to carbon ions locations in fullerene shell. But taking 
into account of this circumstance will just result in correction of wave states eigenvalues and 
spatial dependencies, while will not call in question the conclusion on the existence of 
VLELs itself. 

For the axial symmetry case the solution for wave functions is presented as a product of 
radial and spherical functions: 

  ,)( lmnlnlm YrR ,    (2) 

wheren, landmarethe principal, azimuthaland magnetic quantum numbersrespectively. The 
numbernsatisfiesthe non-equality 1 ln . The energy of electron nlE  corresponds to every 
wave function. 

The equations for radial wave function within the bounds of simplified sphericalmodel of 
spherical fullerene in atomic system of units are written as 
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where=e2/(40), Z–the fullerene ion charge,  rfull 6.63– the fullerene radius in atomic 

system of units. We consider now the region inside the charged fullerene ZC 
60 that is r<rfull. 
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Figure 2: Fullerene ion ZC 
60 in a spherical system of coordinates. 

 

The Equation 3can be rewrittenas 
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Inbeginning, letusinvestigateelectrons-states withl=0 (the spherical symmetry s-states). The 
solutionsof (3) limited at r=0 will be 
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Apartfrom (6),another solutions tending to infinity atr=0 will also be applicable: 
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However, thosesolutionsarephysicaltoo, because the integral of square of wave function 
module in the vicinity of singularity pointr=0 is convergent, that isfinite. Thus, the wave 
eigenfunctions inside fullerene sphere for azimuthal quantum number l=0 are as following: 

   
r

rk
r

rk
R n

n
n

n
cossin

0 
    

(8) 

with correspondent energy levels )2/( 22
0 nn ZE  , n =n=1,2,3…;the parameter n is 

determined from boundary conditions. 
The solutions of Equations 4 for the region outside the fullerene shell are presented in 

Appendix 1. Theconditionsofsewingtogetherthewavefunctions and their derivativesinside and 
outside afullerenesphereresult in thatforcharge Z=+1 and n >> 1 the parameter n is equal 
about -0.24. The expression )2/( 2

nn ZE  , where nis the integer number, arises from the 
conditions of converging of the solution at r   and is the obligatory property of Coulomb 
systems. 

The parameter  fullnn rZE /2   from Equation 5 should be more than zero otherwise 

nnk   will be imaginary. In last case the solution would be                  
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    (9) 

However, the appropriate energy levels in this case are lower than the bottom of Coulomb 
potential well (see Figure 1) and, consequently, the solutions (8) do not have a physical 
meaning. 

ThecompletesetofsolutionsforEquations 3and 4for the casel> 0 and for the region 
outside the fullerene sphere are given in Appendix 1. 

Results and Discussion 

Let us now use the model of VLELs to some interesting quantum mechanical applications. 

Electron recombination with electron capture to volume-localized levels of fullerene ion 
ZC 

60  

Consider the electron beam incident on the medium consisting of fullerene ZC 
60  ions. 

The intensityof electron beam passing through the medium containingparticles is 
changing according to Bouger-Beer-Lambert law: 

 xEnQEIxEI n )(exp)(),( 0  ,  (10) 

where 0I istheinitialintensityofelectronbeam, 1/(m2s); n – theconcentrationofparticles, 1/m3; x 
– the distance, passed by the beam, m; )(EQ  - the total cross-section of electron scatteringon 
the particle; E – the energy of the electron. 

Supposethatthemediumcontainsfullerenes, fullereneionsoronionfullerenes. The 
electrons scatter on nanoparticles by two ways: 
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 Elasticscattering (whenelectronenergy is not changing during collision but the 
electron can scatter at some angle from initial direction of propagation); 

 Non-elastic scattering with energy loss of incident electron including several possible 
channels (fullerene transition to the state with higher electron energy, the scattering 
with excitation of fullerene’s plazmon oscillations, one- or many-fold ionization of 
fullerene, the electron capturewith transition to exciting state or photon emiting 
(electron recombination).  

We will stay in more detail on electron capture phenomenon. Consider the problem of 
moving electron capture by positive ion of ZC 

60 fullerene in the state of rest (Figure 3). 
 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 
 

 
 
Figure 3: The geometry of electron recombination phenomenon: a) particles positionbefore capture; b) particles 
positionafter capture. 
 

Theelectronwithwavevector k andmomentum p directedalongz-axis and kinetic 
energyE=p2/2me= emk 2/22 (Figure 3a) is falling upon the fullerene. 
Asaresultofinteractiontheelectroncanbecapturedbythefullerenethatistheelectroncantransfertoo
neofunoccupiedelectronlevelsofneutral or 
chargedfullerenewithinstantaneousemittingofphoton (Figure 3b). 

Ifweknowthewavefunctions  rn correspondingtodifferentenergyquantum 
levelsoffullereneions, thenfreeelectroncaptureamplitudeduring transition from continuum 
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spectrum state with energy E togivenenergylevelEnwith wave functionnis written by the 
following manner:    

       rkirUrnkT n  exp,  ,  (11) 

where  rU isthepotentialofion 10
60
C , presented inFigure 4, k - the wave vector of incident 

electron. Thus, we use the classical Born approximation. Thepotentialofneutralfullerene [6] is 
shown inFigure 5. 
 

 

 

 

 

 

 

 

 

 

 
Figure 4: Schematic presentationof self-consistent potential of fullerene ion 10

60
C . 
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Figure 5: The wave functions and the potential of the well for C60 shell reproduced from 
[6]. 
 

So, the amplitudeoftheelectroncapture on free electron levels of fullerene ion with wave 
function n will be the integral on volume: 

       dVrrUikznkT n
V

 exp, ,  (12) 

where k is the electron wavevector. 
Forestimationofthisintegralit is convenient to expand the plane wave of incident 

electron on spherical waves the following way [18] (seeFigure 3a): 
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Buttheproductofradialfunctions )(rRnl andsphericalfunctions ),( lmY are exactly the wave 
eigenfunctionsinside a charged fullerene sphere. This sircumstance considerably simplifies 
the approximate calculation of integrals (12). 

The capture probability is the square of matrix element. 
Asaresultthesquarerootfromprobabilityofelectroncapture to sphericall symmetrical level (n=0) 
is estimated as 
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Theterm 162hasarisenduenormalization of spherical functions (see Appendix 2). 
Inthisexpressionthewavevectorkis expressed in atomic unite, so it is necessary to make the 
substitution 

2
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2 4
Zem
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Then we get the simple expression 

f
capture kr

P 


2
16

1
2 .    (16) 

From the above expression we concludethatthe capture cross-section (proportional to capture 
probability) isinverselyproportionalto squareofwavevectoror to electron kinetic energy. 

The partial capture cross-section is 
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where  is the angular frequency of emiting photon, с– the light speed. 
For more thourough calculation instead of (16) we need to take the following integral 

  dxYrRkx
kr

P
fr

lmnl
f

capture  
0

2 ,)(sin
8

1



,  (18) 

wherekisthe wave vector of incident electron and the wave vector of electron level is written 
as 






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f
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The total capture cross-section is 


n

ncapturetotalcapture ,,   

After calculation we get for capture cross-section the following graph (Figure 6). 

 

 
 
Figure 6: Analytical estimation of cross-sectionof electron capture byfullerene 1

60
C ion. 
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ace, then the modules of matrix elements of transition amplitude should be less compared to 
amplitutudes of transitions on volume-localized electron levels formed by Coulomb field of 
fullerene ion. 

Following the results of the paper [Ошибка! Закладка не определена.], the wave 
functions of delocalized electrons are estimated as 








 


0.1
63.6

exp
r

An ,   (20) 

that is they are exponentially vanish in thin layer in the vicinity of fullerene sphere surface. 
The Figure 7 shows VLEL wave function calculated with the use of simplified 

sphericalmodel (n=50) andapproximate presentation of SLEL wave function on the basis of 
the paper [6] after their normalization. OnecanseethatthemaximumamplitudeofSLEL is larger 
compared to VLEL if we do not consider a fullerene center where the wave function has the 
integrable singularity. However, duetothecircumstancethattheVLELwavefunction is 
sinusoidal-like with wave vector from Equation 6, there are the basis for the conclusion that 
the electron capture cross-section will be larger for VLEL. It is supported by calculations 
which show that the capture probability on VLELs is 510 times higher in comparison to the 
capture probability on SLELs. 

There is alternative approach to esimate the electron capture cross-section. The general 
rule connects together the electron recombination (that is the capture) and the photoionization 
cross-sections using that these phenomena are mutually inverse reactions, see [19] for 
example: 
 
 

 
 

Figure 7:Thenormalizedwave functions for volume-localized electron level with principal 
quantum numbern=50 andsurface-localized electron level of fullerene. 
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where recomb  isthe recombination cross-section, photoion - the photoionization cross-section, h 
– the Planck constant,  - the angular frequency of photon, с–the speed of light, me – the 
electron mass, V – the electron velocity, gi and gk–the statistical weight factors of the 
photoionization and recombined states respectively. This expression is derived from the 
detailed partial photoionization cross-section treatmentusing so called the detailed 
equilibrium principle.So, the larger the photoionization cross-section the larger the 
recombination cross-section and inversly. 

The analysis of photoionization cross-sections data, see [4-7,20] together with Equation 
21 leads us to the conclusion that the electron capture cross-sections as much as 10-1610-

15cm2 are possible.In the work [21] the recombination cross-sections of the order of 10-

15cm2for the electron energy of few eVwere obtained from theoretical considerations. These 
results are in accordance with our predictions. 

If the energy of incident electronE=100 eV, the electron momentum will be p 
0.5410-23kgm/s, and its velocityV=p/me 5.4106m/s. The electron wave vector is equal to 

 
/pk   0.51011m-1        (21) 

Hence, krf 17. It should be expected (Figure 7), that maximum amplitudes of capture to 
levels formed by Coulomb field will take place at krf/2, that is at k one order of magnitude 
less. For this reason, the maximum of capture cross-section should be at electron energy E1 
eV which is observed in Figure 6. The location of this maximum does not depend on 
ionization extent of fullerene ion. 

The calculation of dipole moments of spontaneous transitions from volume-localized electron 
levels to other levels of fullerene ions  

The dipole electric moment of electron transitionfromthestaten1l1m1 tothestaten2l2m2 is 
written by the definition as 

111222111222 , mlnmlnmlnmln red  ,  (22) 

Wherethe wavefunctionsoffullereneion ZC 
60 ( Figure 2) withintheboundsof simplified 

spherical model are represented as the product of radial and spherical functions. 
ThedipoleelectricmomentinCartesiansystemofcoordinates (we omitthe multiplier e – the 

electron charge) is presentedby 3-foldintegral (Figure 2): 


111222 , mlnmlnd          (23) 
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

, 

where x̂ , ŷ , ẑ are the unit vectorsalong correspondingaxes. 
Theexpfressionsfordipoleelectricmomentforelectrontransitionfromthestaten1l1m1  tothe 

staten2l2m2  includes onlyx- andz-components (Figure 2): 

zdxdd zxmlnmln ˆˆ
111222 ,  .   (24) 
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Thedipolemomentsarenon-zero for the next transitions: 
Letthemagneticquantumnumber 01 m in initial state 111 mln . Thenthe x-componentof dipole 
moment xd  is non-zerowhen 11 m . Taking into account normalization of spherical 
functions (see Appendix 2) it equals to 
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Let 01  mm . Then 
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(27) 

If 121  ll thelasttermin square bracketsof (25) and (27) disappears. 
Atthesametime, z-component of dipole moment is non-zero only for mmm  21 orfor

mmm  21 and equals to 

        )(,,,
21

1

1
212211 tPtPtdtlKlKlnlnad m

l
m

lmmz  


   (28) 

So, fortransitionsbetweens-stateswithazimuthal 
andmagneticquantumnumbersequaltozero, only z-components will be non-zero and from (28) 
we get: 

)()(
4
1

00
0

3
, 21111222

rRrRdrrdd nnzmlnmln 


   (29) 

Butthesetransitionsbetweens-statesof VLELs are excluded due to selection rules. For this 
reason it is necessary to take into account either transitions from s-states 
ofVLELonSLELwith azimuthall=1 or transitions betweenp-states ofVLELs (seeAppendix 1) 
ands-statesof VLELs, seeTablesbelow. 

The probability of spontaneous radiation per unit time at dipole transition is equal to 
2

,
0

3

3

, 111222111222 43
2

mlnmlnmlnmln d
c

P






  

(30) 

where 

222111 mlnmln EE  , 222

, 111222 zxmlnmln ddd    (31) 
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AttransitiontoSIsystemthe calculated dipole moments should be multiplied by 

 

eme

2
04   

 
So, theprobabilityofspontaneousradiationperunittimeandthe characteristic 
timeofspontaneousradiationare 

2

,223
0

33

, 111222111222 3
8

mlnmln
e

mlnmln d
emс

P  


 

111222 ,

1

mlnmlnP


 

where thedipolemomentsareexpressedinatomicunitsas previously.
 

Due to big size of fullerene the dipole moments of transitions will be considerably 
larger and characteristic lifetimes of electron states will considerably less in comparison to 
transitions in ordinary molecules.Also, 
onecanmaketheassumptionanalogoustocalculationofprobabilityofelectron capture in 
corresponding subsection that the probability of recombination from VLEL to lower VLEL 
may be higher compared to probability of transition VLEL-SLEL. However, 
theispredictionisnot supportedbynumericalcalculations. 

The dipole moments of spontaneous transitions calculated using the formula (22) 
for fullerene ions between VLELs  Is1p и Js (J<I) whereI=2,3,4… andJ=1,2,3… for 
Z=+1,Z=+3,Z=+10 are givenin Table 1, Table 2 and Table 3respectively. The three 
parameters:x-component of the dipole moment

111222 , mlnmlnd [a.u.], the photon angular 

frequency[s-1] and the characteristic lifetime of the level Ip [s] are presented in these 
Tables. 
 

Table 1: The dipole moments of transitions, the angular frequency and the characteristic Ip 
level’s lifetimefor the fullerene ion 1

60
C  

 Ip 2p 3p 5p 10p 50p 

Js  

SLEL -0.24 

5.61015 

3.210-7 

0.80 

8.51015 

8.410-9 

0.66 

1.01016 

7.810-9 

0.44 

1.11016 

1.510-8 

0.20 

1.11016 

6.510-8 

2s  

– 

0.57 

2.91015 

0.64 

4.31015 

0.48 

5.01015 

0.26 

5.21015 
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4.310-7 9.810-8 1.210-7 3.510-7 

3s – – -1.49 

1.51015 

4.710-7 

-1.45 

2.11015 

1.710-7 

-1.32 

2.31015 

1.610-7 

5s – – – -0.80 

6.21014 

2.210-5 

-4.34 

8.21014 

3.210-7 

10s – – – – 2.17 

2.01014 

9.010-5 

 

Table 2:The dipole moments of transitions, the angular frequency and the characteristic Ip 
level’s lifetimefor the fullerene ion 3

60
C  

 Ip 4p 6p 9p 15p 45p 

Js  

SLEL 0.98 

1.21016 

2.210-9 

0.75 

1.81016 

9.910-10 

1.08 

2.11016 

3.110-10 

1.89 

2.21016 

8.210-11 

0.99 

2.31016 

2.710-10 

4s  

– 

-1.04 

6.51015 

1.110-8 

-0.76 

9.31015 

7.010-9 

-1.45 

1.11016 

1.210-9 

-0.98 

1.21016 

2.310-9 

6s  

– 

 

– 

0.93 

2.91015 

1.610-7 

1.76 

4.31015 

1.310-8 

1.0 

5.11015 

2.510-8 

9s  

– 

 

– 

 

– 

1.81 

1.51015 

0.78 

2.21015 
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3.210-7 5.110-7 

15s  

– 

 

– 

 

– 

 

– 

0.41 

7.31014 

5.110-5 

 

Table 3:The dipole moments of transitions, the angular frequency and the characteristic Ip 
level’s lifetimefor the fullerene ion 10

60
C  

 Ip 6p 10p 30p 50p 100p 

Js  

SLEL 0.24 

9.51015 

6.810-8 

-2.43 

4.61016 

5.710-12 

4.22 

6.51016 

6.910-13 

4.38 

6.61016 

6.010-13 

4.11 

6.71016 

6.610-13 

6s  

– 

0.30 

3.71016 

7.410-10 

1.36 

5.51016 

1.110-11 

1.04 

5.71016 

1.710-11 

0.76 

5.71016 

3.010-11 

10s  

– 

 

– 

-1.94 

1.81016 

1.410-10 

-2.31 

2.01016 

7.910-11 

-2.38 

2.11016 

6.810-11 

30s  

– 

 

– 

 

– 

-3.73 

1.51015 

7.510-8 

-3.64 

2.11015 

2.710-8 

50s  

– 

 

– 

 

– 

 

– 

-2.58 

6.21014 

2.110-6 

 

FromthepresentedTablesonecanseethatthe calculated dipole moments depend on 
fullerene ionization extent, initial and final electron state, and are varied inbroadrange from 
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about 0.2 to 5 in atomic system of units. Basically, the dipole moments of transition VLEL-
SLEL are of the same order of magnitude as the dipole moment of transition VLEL-VLEL. 

The analysis of possibility of coherent radiation generation on fullerene C60ions VLELs 

The analysis conducted in previous Sections gives ground to use the extraordinary 
properties of fullerene ions for coherent radiation generation. 

There is a principal possibility to get the coherent radiation using the medium 
containing two parts of particles: excited fullerene ZC 

60  ions having with one electron at 
VLEL staten1l1m1 (state 1) and excited fullerene ZC 

60  ions with one electron at VLEL  
staten2l2m2(state 2) or fullerene ZC 

60  ions in equilibrium state.The quantum energy level 1 is 
higher than the level 2. 

Let us introduce the following designations: 1n is the concentration of excited  
fullereneions with electrons at the state1,  and -  the radiation frequency and 
corresponding wavelength at transition 12, 

To estimate the inverse concentration 1n needed for attainment of generation threshold 
for coherent radiation at VLELs we cah use a simple formulation: 

1absL  

 

where 

sp

n






 


 1

2

2
 

Here   is the coefficient of resonance amplification per unit length; 

 absL  -  theabsorption length of photons; 

sp - the width of dipole spontaneous radiation line. 

   - thetotalbroadeningofemissionlineduetoDopplereffect, collisions, radiationless 
losses and spontaneous radiation: spnrcoldop   . 

To reachthe generation threshold it is necessaryto have 











 sp

absL
n 21

2  

 

Theabsorptionspectrum of fullerene gasC60was investigated in the paper [22]. 
According to experimentally obtained data given in this paper the absorption cross-section is 
about abs (15)10-15cm2in the wavelength range=200400 nm. 
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The length of absorption is equal to 

absfull
abs n

L

1

  

 

where the concentration of neutral fullerenes nfull1017cm-3=1023m-3 for fullerene gas at the 
temperatute T  700C. 

Basically, for the estimation we may put sp.  If we use the characteristic value 
for the wavelength 10-910-7 m which corresponds to 5101451016 1/s (see Tables 1–3) 
then the generation threshold for inverse level concentration will be in the range 

1n 610861012cm-3 

 

which is possible because the concentration of fullerene ions ZC 
60 under the electron beam 

interaction conditions diminishes by about one order of magnitude with growth of ionization 
degree Z by unity and the electron capture cross-sections are large enough. 

For example, if the gas with concentration of neutral fullerenes about nfull=1017cm-3 
then, according to results of electron capture calculations, it is possible to get the 
concentration of  ZC 

60  ions about 

143 10
fn cm-3. 

Thus, the estimations show that the medium containing fullerene ZC 
60  ions may be 

used for the generation of coherent radiation. 

Conclusions 

The existence of volume-localized electron levels (VLELs) of fullerene ions ZC 
60  is proven 

on the basis of simplified quantum-mechanical consideration of fullerene ion. These levels 
arise in Coulomb potential well formed inside fullerene after its ionization. The simplified 
calculation of VLELs wave functions is conducted using the fullerene sphere model. The 
basic parameters of VLELs including energy and spatial functional dependencies are 
obtained. To get those characteristics the analytical dependencies of wave functions inside 
and outside the fullerene sphere are used which are sewn on the sphere. We use the model 
proposition that the charge is uniformly distributed on the sphere that is the simplified 
spherical model approach. 

The analysis of electron capture during the interaction of electron beam with the 
medium consistent of fullerenes ions ZC 

60 is conducted as the application of the methods 
developed. 
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Thecalculation estimationsdoneshowthattheelectroncapturecross-sections for capture on 
VLELs are about one order of magnitude larger compared to capturecross-sections on 
ordinary SLELsat electron energy of the order 10 eV and is about 10-19 m2. 

The calculations of dipole moments for transitions from fullerene ions VLELs to other 
VLELs and to SLELs are also conducted. The calculated dipole moments depend on 
fullerene ionization extent, initial and final electron state, and are varied from about 0.2 to 5 
in atomic system of units. 

The unique features of fullerenes give ground to new interesting opportunities. The 
principal possibility of coherent radiation generation on fullerene ions VLELs is discussed. 
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Appendix1.Expressionsforradialfunctionswithazimuthalnumberl>0 and the 
presentation of wave functions outside fullerene sphere    

Considerthe quantumstateswithl>0, 1 nl . 
Todeterminecorrespondingwavefunctionsitisconvenienttousethefollowingrecurrentexpression
: 

nl
l

nl rR   

dr
d

r
nl

ln



1

1,   

From which it iseasy togetall nlR in consecutive order onceyouknow lR1 . 
For example, inside fullerene (r< 6.63) we have: 
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43  , etc. 

Here 













f
nn r

ZEk 2 . 

Analogousexpressioncanbeconsecutivelyobtainedifcos[knr]/ris given as Rn0 . 
Theanalysisofexpressions (32) showsthatallRn1satisfy the conditions of finiteness of 

integral from wave function module square. ThisiswhyasimptoticsoffunctionsRn1atr0 is as 
following: 

 
l

l
n

nl r
l
k

R
!!12

2 1






 

Thenwavefunctionsinsideandoutsidefullerenesphereshouldbesewntoensurecontinuityof
wave function and its first derivative (it is practically useful to equate logarithmic derivative 
of wave function inside and outside sphere), see Figure 8. 

ThisdiscussionleadsustotheconclusionthatthewaveeigenfunctionsofVLELsare the 
expressions (8) for azimuthal and magnetic quantum numbers landm equal to 0. Forl>0 
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theexpressions 1nR from (32) serveasradialpartsofVLELsbecause they have integrated 
singularity at r=0. 

We use the following quantity as an energy unit 

 2
0

2

4

4

eme 27.21эВ.  (33) 

Inanycasethespatialdependenciesofwavefunctionswithl=0 have the maximum in the 
center of fullerene spheroid as it is shown in Figure 8. 

Considerinmoredetailthe solutions for wave functions outside the fullerene sphere, see 
Equation 4. Rewrite this equation for the casel=0: 

000
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nnn
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(34) 
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(35) 

Realizing the following substitute 

rRu nn 00       (36) 

we get 

00
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2
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22 nn
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ud
 ,  (37) 

After substitution rr 2ˆ  this equation transforms to the following view: 

0
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2
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2

2ˆˆ n
nnn uE

r
uZ

rd
ud

 .   (38) 

Inthecaseofinequality ZrEn  0  that is at rather large distances from the centre the 
following equation will be valid: 

0
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which has the next solutions: 
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The second solution is excluded, because it tends to infinity at large distances. 
We look now for the solutionin the form 

  2
ˆ

00

0

ˆ
nE

r

nn erfu


     (41) 
Then for  rf n ˆ0 it is valid 
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After next substitute 

x
E

r
n02

1ˆ




     

(43) 

we get 
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Letusdesignate 
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Then 
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The Equation 46 has the solution limited at x only for integer n0=1,2,3... 
Forthesolutionofthisequationitisconvenienttosearch the solution in the form of infinite set: 







ni

i
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Substituting (43) into (42) we get: 
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Bysubstitutingofsummationindex 1 ji werepresentthesumonfirst term in square brackets 
this way: 
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Hence,
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Lettheprincipalquantumnumberbe 1n . We can choose 11 a .Then we get the following 
recurrence formula for determination of coefficients ia : 
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that is 
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Lettheprincipal quantum number now be 1n . Then 
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0ia , ni  ;    (53) 

11 na ;  
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 , ni   (54) 

Ifthe azimuthalquantumnumberlismorethan 0, then the radial part of wave function 
satisfies to the following equation: 
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2

2

2


x
fll

x
f

dx
df

dx
fd nl

nl
nl

nl
nlnl  . (55) 

Look for solution in the form 
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Forradialfunctions )(rRnl the following condition of normalization is valid: 
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21 nn  ,            

where ik isa symbol of Kronecker. 
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Figure 8: The wave functions of VLELsof  fullerene 1
60
C  ion with different parameters   

(principal quantum number), l (azimuthal quantum number) and  (the “sewing” parameter). 

 

 

Appendix2.Asummaryofbasicformulasfor normalization of spherical 
functions 

In expression for wave functionswith azimuthal numberlfor fullerene ion within the bounds 
of simplified spherical modelthereare (2l+1) independentsphericalfunctions: 

   mPY m
llm cos)(cos,  , lm ...1,0 ,  

   mPY m
llm sin)(cos,  , lm  ...2,1 , 

where )(cosm
lP are attached functions of Legendre: 

 

  )(1)( 22 tP
dt
dttP lm

mm
m

l  . 

 

Here 
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l

ll t
dt
d

l
tP 1

!2
1)( 2   

- the Legendre polynomials. 
The following recurrence formula takes place for them: 

    0)()(12)(1 11   tlPttPltPl lll , 11  t  ,  0l .  

The normalization of spherical functionsisasfollowing: 
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So, toensurethenormalizationofsphericalfunction   ,lmY , it is necessary to multiply it 
by a factor 
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