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AHHOTaLMA

B pabote mpencTaBieHB TeOCTATUCTHYECKHIE aJITOPUTMBI IPOCTPAHCTBEHHOTO NpeACcKa3aHusd KOHIICHTPAIUN
meramta (Pb) ¢ nmpuMeHeHneM TporpaMMHOro maketa ‘“Multigeo”: OOBIYHBIN KPUTHHT W OOBIYHBIN KOKPHIHHT.
WimocTpariisi METOIOB TPOBEICHA C HCIIONB30BAaHMEM KOHIICHTPAIMK psiAa MeTauioB, m3MepeHHBIX B 200
tToukax JKeHeBckoro osepa, u KoHieHnrTpaunuu csunia (Pb), usmepennoit 8 175 toukax JKeneckoro ozepa. C
MTOMOIIBI0 KPOCC-BaNUAANU OBUIO TPOBEACHO CPaBHEHHE IPENCKA3aHUi, BBINOTHEHHBIX KaK C IOMOIIBIO
OOBIYHOTO KPUTHHTA, TAK U OOBIYHOTO KOKPUTHHTA C Pa3IMYHBIM YHCJIOM IOMOJHHUTEIBHBIX MEPEMEHHBIX (OT
KOKPHUTHHra C CIMHCTBCHHOW OMOJIHUTEIBHON TMEPEMEHHOW IO KOKPUTHMHTA C BOCEMBIO JOMOTHUTEIHHBIMH
TIePEMEHHBIMH).
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Abstract

This work presents geostatistical algorithms for the spatial prediction of concentration of metal (Pb) using
software “Multigeo”: ordinary kriging and ordinary cokriging. The techniques are illustrated using
concentrations of some metals measured at 200 points of Leman Lake and concentration of metal Pb measured at
175 points of Leman Lake. Cross-validation is used to compare the prediction performances of ordinary kriging
and ordinary cokriging with the various numbers of secondary variables (from cokriging with the only secondary
variable to cokriging with the eight secondary variables).
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1 Introduction

Our preprint concerns the contamination of Geneva Lake sediments. The aim of our work is to improve of
quality of contamination prediction on the basis of additional information on variables. If there is excessive
information on variables, the question arises: what information to use in variable estimation? The additional
information can be useful (improves estimation, reduces uncertainty of estimation, etc...), but also it can be
superfluous (does not give anything additional). The information on correlated variables should add something to
estimation of a variable but complication of model can reduce this addition. Hence, it is necessary to find out:
what quantity of useful additional data is necessary to use in variable estimation to improve it and (or) to reduce
its uncertainty.

There are two methodological approaches to spatially distributed data treatment: deterministic (e.g., inverse
distance squared, triangulations, splines, multiquadric equations) and statistical (e.g., geostatistics, stochastic
simulations, fractal interpolations and modeling). As a matter of fact, some types of models explicitly take into
account spatial continuity described by different methods — semivariograms, generalized covariance functions,
etc. [1] and others do not take into account spatial continuity explicitly.

Geostatistics deals with the statistical treatment of data. It is assumed that measured data Z(u) are values of a
random field Z(u). It should be noted that random fields selecting while modeling of a regionalized variable is a
matter of analytical convenience. This procedure does not imply that the phenomenon under study is really
random. In order to use geostatistics we have to determine structure (covariance function) of the field by using
available data.

The most popular geostatistical model is kriging (cokriging). Kriging (cokriging) belongs to the class of
BLUE (best linear unbiased estimator) or BLUP (best linear unbiased predictor) estimators. It means that:

1) predicted mean must be equal to the real mean (if it is known the simple kriging (cokriging) is used,

unknown - ordinary kriging (cokriging));

2) error of estimation is minimal. [2]

Multivariate geostatistics allows using the useful additional data on correlated variables for improving of
prediction estimation of a variable and/or reduction of uncertainty of estimation.

This paper presents studying of influence of the number of additional variables and their mutual correlation
with the main variable on result. Researches were carried out on the real data on Geneva Lake sediments
contamination.

2 Multivariate Geostatistics

2.1 Direct and Cross Covariances

The cross covariance between two random functions can be computed not only at locations x but also for
pairs of locations separated by a vector h. On the basis of an assumption of joint second-order stationarity a cross
covariance function between two random functions is defined which only depends on the separation vector h.

The interesting feature of the cross covariance function is that it is generally not an even function, i.e. its
values for +h and —h may be different. This occurs in time series when the effect of one variable on another
variable is delayed.

The cross variogram is an even function, defined in the framework of an intrinsic hypothesis. When delay-
effects are an important aspect of the coregionalization, the cross variogram is not an appropriate tool to describe
the data [4].

2.1.1 Cross covariance function

The direct and cross covariance functions C;; (h) of a set of N random functions Z;(X) are defined in the
framework of a joint order stationarity hypothesis
E[Z.(x)]=m, forallxe D;i=1,...,N
Elz,00-m,)-(,(x+h)-m,)]=C,(n)  forallx,x+he D;i,j=1,..,N



The mean of each variable Z, (X) at any point of the domain is equal to a constant m; . The covariance of a

variable pair depends only on the vector h linking a point pair and is invariant for any translation of the point pair
in the domain.
A set of cross covariance functions is a positive definite function, i.e. the variance of any linear combination

of N variables at n+1 points with a set of weights a); needs to be positive. For any set of points X, € D and
any set of weights a); eR
N _n ) N N n n ) .
1 1
var(ZZwaZi (xa)]: 3333 0lw)C, (x, ~x,) 20
i=1 a=0 i=1 j=1 =0 =0

2.1.2 Delay effect

The cross covariance function is not a priori an even or an odd function. Generally for i # J, a change

in the order of the variables or a change in the sign of the separation vector h changes the value of the cross
covariance function

C;(h)=Cj(h) and Ci(-h)#C;(h)
If both the sequence and the sign are changed, we are back to the same value
Cij (h) = Cji (—h)
In particular, the maximum of the cross covariance function (assuming positive correlation between a
given variable pair) may be shifted away from the origin of the abscissa in a certain direction by a vector r. This
shift of the maximal correlation is frequent with time series, where one variable can be an effect on another

variable, which is not instantaneous. The time for the second variable to react to fluctuations of the first variable
causes a delay in the correlation between the time series [4].

2.1.3 Cross variogram

The direct and cross variogram Vi (h) are defined in the context of a joint intrinsic hypothesis for N random

functions, when for any X, X+he D andall pairs i, j =1,..., N

E[Zi (x+h)-Z, (X)] =0
{cov[(zi(xm)—zi(x)), (Z,(x+h)=Z,09)]= 27, ()

The cross variogram is thus defined as half the expectation of the product of the increments of two variables

1
7, () = ElZ0cr ) = 2,09)- (2, e+ ) - Z, ()]
The cross variogram is obviously an even function and it satisfies the following inequality
2
7i ()5 () =7, ()
because the square of the covariance of increments from two variables is bounded by the product of the
corresponding increment variances. Actually a matrix F(ho) of direct and cross variogram values is a positive

semi-definite matrix for any fixed h, because it is a variance-covariance matrix of increments.

It is appealing to investigate its relation to the cross covariance function in the framework of joint second-
order stationarity. The following formula is easily obtained

7,0 =C, (0= (C, (- +C, (+h)

which shows that the cross variogram takes the average of the values for —h and for +h of the corresponding
cross covariance function. Decomposing the cross covariance function into an even and an odd function

Cy () = 1(C, (+h) +C, (-1)+ 7 (G, (+h) ~ C, ()

even term odd term



we see that the cross variogram only recovers the even term of the cross covariance function. It is not
adequate for modeling data in which the odd term of the cross covariance function plays a significant role [4].

2.2 Cokriging

The cokriging procedure is a natural extension of kriging when a multivariate variogram or covariance model
and multivariate data are available. A variable of interest is cokriged at a specific location from data about itself
and about auxiliary variables in the neighborhood. The data set may not cover all variables at all sample
locations. Ordinary cokriging requires at least one data value about the variable of interest, while simple
cokriging, relying on its knowledge of the mean, can be performed with data solely about the auxiliary variables.
At the other end, if all variables have been measured at all sample locations and if the variables are intrinsically
correlated, then cokriging is equivalent to kriging.

2.2.1 Isotopy and heterotopy

The measurements available for different variables Z,(X) in a given domain may be located either at the
same sample points or at different points for each variable. The following situations can be distinguished

e complete heterotopy: the variables have been measured on different sets of sample points and have no
sample locations in common;

e  partial heterotopy: some variables share some sample locations;

e  isotopy: data is available for each variable at all sampling points.

Complete heterotopy poses a problem for inferring the cross variogram or covariance model. Experimental
cross variograms cannot be computed for completely heterotopic data. Experimental cross covariances, though
they can be computed, are still problematic as they do not refer to the same points (and sometimes subregions) as
the corresponding direct covariance values.

With partial heterotopy it is advisable, whenever possible, to infer the cross variogram or covariance function
model on the basis of the isotopic subset of the data.

A particular case of partial heterotopy important for cokriging is when the set of sample points of the variable
of interest is included in the sets of sample points of other variables, which serve as auxiliary variables in the
estimation procedure. In this case, when the auxiliary variables are available at more points than the main
variable, cokriging is generally of advantage [4].

2.2.2 Ordinary cokriging

The ordinary cokriging estimator is a linear combination of weights wzlz with data from different variables
located at sample points in the neighborhood of a point X,. Each variable is defined on a set of samples of

(possibly different) size N, and the estimator is defined as

Z: ()= 3 Y 0.2, (x,)

i=l a=1
where the index 1, refers to a particular variable of the set of N variables. The number of samples n,

depends upon the index 1 of the variables, so as to include into the notation the possibility of heterotopic data.

In the framework of a joint intrinsic hypothesis we wish to estimate a particular variable of a set of N
variables on the basis of an estimation error, which should be nil on average. This condition is satisfied by
choosing weights, which sum up to one for the variable of interest and which have a zero sum for the auxiliary
variables

N 1 ifi=i
Za); =0, = ’
o) 0 0 otherwise

Expanding the expression for the average estimation error, we get



N N

ERWQZJM]EZZ%ZW)EMWAM Y3 07, (%) | =

i=l a=1 i=0 a=1
Hl_/ i, T

N n

Zzwﬂzu)ZQM=

i=1l o=

For the variance of the estimation error we thus have
N n X 2
_ i
=E Zza)azi (X,)— Z (%)
i=1 a=1

Introducing weights a)(') defined as
a)(i):_é‘iio :{01 .If .I_.I01
ifi#i,
which are included into the sums, we can shorten the expression of the estimation variance to
N o 2
-E (zzw;zi (xa)]
i=1 =0

Then, inserting fictitious random variables Zi(O) positioned arbitrarily at the origin, increments can be

formed
el| 3| Soiz)-203 0 || |-l 3302 x)-2,0)

Defining cross covariances of increments Ci} (Xa ) Xﬁ) (which are not translation invariant) we have

N N n n
— i il
=222, 2, 0u0)C; (Xar%)
i=L j=L a=0 f=0
In order to convert the increment covariances to variograms, the additional assumption has to be made that
the cross covariances of increments are symmetric. With this hypothesis we obtain the translation invariant

quantity

N N N MM
O-é = Zzl,z{w:x?/iio Xy =Xo) = Yioio (Xp =X%p) = zltzfzfﬁz{w;w/]ﬂ/” (X, - Xp)
1=1 o= i=l j=1 a= =!

After a minimization in which the constraints on the weights generate N parameters of Lagrange ; , we have

the ordinary cokriging system

N Nj .
YD ohy (%, —xp)+ =7, (X, —%,)  fori=1. N;a=1..n,
j=1 p=1

N

D> w0, =6, fori=1..,N
B=1
and the cokriging variance

N n )
O-éK = Zza)(lz?/iio (X —%0) T Ui, — Vi, (X =%o)

i=1l =1



2.2.3 Simple cokriging

Ordinary cokriging has no meaning when no data is available for the variable of interest in a given
neighborhood. On the other hand, simple kriging leans on the knowledge of the means of the variables, so that an
estimation of a variable can be calibrated without having any data value for this variable in the cokriging
neighborhood.

The simple cokriging estimator is made up of the mean of the variable of interest plus a linear combination of

weights a); with the residuals of the variables

N N
* i
Zi0 (Xo) =m; + ZZa)a(Zi (Xu) —m; )
i=1l =1
To this estimator we can associate a simple cokriging system, written in matrix form

Cy, - Clj o Coy | wy Cyj,
Ci Ci Cin | W, = Cii,
Cy CNj Cw | Wy Chi,

where the left hand side matrix is built up with square symmetric n, XN, blocs C,; on the diagonal and with
rectangular n; X n; blocs C;; off the diagonal with
_ T
The blocks Cij contain the covariances between sample points for a fixed pair of variables. The vectors C;;

list the covariances with the variable of interest, for a specific variable of the set, between sample points and the
estimation location. The vectors W; represent the weights attached to the samples of a fixed variable [4].

2.2.4 Collocated cokriging

A particular heterotopic situation encountered in practice is when we have a variable of interest Z (X) known
at a few points and an auxiliary variable S(X) known everywhere in the domain (or at least at all nodes of a
given estimation grid).

XU ET AL. [3] called collocated cokriging a neighborhood definition strategy in which the neighborhood of
the auxiliary variable is arbitrarily reduced to only one point: the estimation location X,. The simple cokriging

system for such a neighborhood (using n data values for the primary variable) is written

C 7z c Z8 w Z | _ c Y74
T =
c ZS O-SS a)S O-ZS

where C,, is the left hand matrix of the simple kriging system of Z(x) and C,, isthe corresponding right
hand side. The vector C,g contains the cross covariances between the n data points on Z(X) and the point X,

where the data value of S(X) is located that is included into the estimator.
In the case of intrinsic correlation the collocated cokriging can be expressed as

o,R ol || W, | Ozl
. =
Ol Oss Qs Oz

To perform collocated cokriging with intrinsic correlation of the variable pair we only need to know the

covariance function
C,, (h) =0, p(h)

as well as the variance o'¢g of S(X) and the covariance 0,5 between Z(X) and S(X) .[4]



3 The description of program Multigeo

MULTIGEO Software is a Geostatistical program that realizes the principal functions of Multivariate Linear
Geostatistics [5].

3.1 Opportunities of program Multigeo

The software acquires an sample/variable data table without limits to their number and permits the user to
operate, on the subsets created by himself: variographic analysis, fitting a linear model of coregionalization,
regionalized Component Principal Analysis, variable estimation, estimation and filtering of variable components,
estimation and filtering of regionalized factors.

The implemented methodologies of the estimation are: kriging, cokriging, collocated cokriging and factorial
kriging.

A cross-validation function, based on the principle “leave one out” permits the user to check the performance
of a model using the statistical comparing of the estimation results and measured values.

The possibility to operate on the histograms, scatterplots and maps, dividing the data set in different subset, is
convenient for the study of the phenomenon variability.

The software also consents the user to create new variables. There are three possibilities: numerical function
of original variables, indicative (Boolean) variables and numerical attributes extracted from a georeferenced grid
in correspondence of sample location.

The set of operations realized on a data subset constitutes a job Job. The intermediate and final results done
in a job are memorized in a Data Base: the memorized objects are the data subset, coregionalization model and
the estimations. The user can inspect, in any moment, the Data Base deleting some objects.

The initial data table during the job can be added by new variables (new columns in the data table): these are
constituted, further than new variables, from the cross-validation and from the estimation or filtering of spatial
components or factors, carried out on the sampled points [5].

3.2 Structure

The software realizes its performances through eight functions that constitute the principal menu. In following
is the list of these functions with a brief description.

FILE

Thorough this function is realized the communication between Multigeo and external part of the user: it opens
a existing job, creates a new job, imports and exports a job, prints the output graphics, imports and exports a grid
of values, exports subset data extracted from the current data table.

NEW VARIABLE

Thorough this function can be create three typology of new variables: indicative variables, numerical function
variables, extracted variables from a regular grid of values.

DESCRIPTION & STATISTICS

It consents the user to editing the sample map and to carry out the histograms and scatterplots.
COREGIONALIZATION MODEL

It consents the user to compute experimental variograms and to fit automatically a linear model of
coregionalization, after some interactive adjusting in order to explore the spatial structures.

REGIONALIZED PCA

It consents the user to carry out the regionalized Principal Component Analysis, i.e. the PCA on different
spatial scale. It is realized, further than on the synthetic description of the links among the variables in study, on
the realization of the factorial kriging.

ESTIMATE

Thorough this function the user operates the different estimation patterns: on grid nodes, on regular pixels, on
random points, on sampled points.

CROSS-VALIDATION




This function carry out the estimation of variables in each sampled point without using the corresponding
measure in the estimation [5].

3.3 Inputs and Outputs

3.3.1 Files

Multigeo changes information with external part in files ASCII format. The changing information in input and
in output is at most tables, grid of values and images. The first ones are files in GEOEAS format, the second ones
are files SURFER format. The imagines, that normally content the elaborated graphical output, are exported as
files in BMP format. One-third type of information, changed at internal of the ESTIMATE function, consists in a
polygon series. The corresponding files are in BLN format, used by SURFER.

3.3.2 Folders

The set of files that compose MULTIGEOQ software can be memorized in any folder. During the installation
the software creates a folder JOBS and inside of it will create as many folders as are the jobs realized. The name
of created folder corresponds with the job name used by user.

3.3.3 Output

The graphical output realized during the execution of the functions can be printed or memorized as files in the
GRAPH_OUT folder created automatically by the software inside of each job-folder. [5]

3.4 Problems

Multigeo does not produce correlation coefficient variables and presents only graphic image of correlation.
Program provides only the correlation matrix for various theoretical models of variables (nugget, spherical and
i.e.).

The program does not allow considering monitoring networks.

In general Multigeo allow only carrying out the variables variogram analysis, the regionalized Principal
Component Analysis (PCA) and the various estimation methodologies: kriging, cokriging, collocated cokriging
and factorial kriging.

4 Case study

41 Initial data

The methods described above were used for the analysis of the spatial data on contamination by metals in
Geneva Lake (Leman) sediments. From a set, which contained 32 names of metals, 9 (Pb, Cu, Cd, Zn, Cr, Ni, Be,
B, Mn) metals were chosen.

Leman is situated in the southwest part of Switzerland. The amount of measurements of Pb was less than
amount of measurements of other metals. Figure 1 shows the location of 175 samples of Pb concentration used in
this study for ordinary kriging and cokriging. Figure 2 shows the location of 200 samples of concentration of
other metals used in this study for cokriging. The technique of cokriging has allowed to use additional
measurements of other metals for improvement of an estimation of Pb contamination and/or reduction of
uncertainty of Pb contamination estimation.

The distribution of values of metals concentration is shown in figure 3. The values of Pb concentration range
from 10 up to 100 and only two points lay in a range from 66 up to 100. The similar situation (presence of
outliers) is as well observed in the distribution of values of Cd, Zn, Cu and, particularly, Mn.

The correlation of Pb with other metals is submitted in Figure 4 and Table 1. We see that Pb is linear
correlated with Zn, Ni, Cd, Cr, Be, Cu and poorly correlated with B, Mn.
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4.2 Structural analysis

To investigate spatial correlation between metals and their own spatial autocorrelations the structural analysis
was carried out. Variogram and cross-variogram roses have the form of an ellipse and are extended along a
direction of 22,5°. For all metals correlation coefficient increases from 15 km in the direction perpendicular to
the direction of anisotropy (small axis of the ellipse) to 65 km along the direction of anisotropy (big axis of the
ellipse). Both variograms and cross-variograms in all directions and in the direction of 22,5° were constructed.

With the help of Multigeo software [5] the models of variograms and cross-variograms were constructed. The
theoretical positively determined functions are used while modeling variograms. One of such functions (model of
spherical type) is used in the present work:

3
15h 0.53h Hea
a a )

PN R

c, h>a

where C, is nugget, C is sill, a is range.

The share of accident (noncorrelatedness) in spatial distribution of the data is determined by nugget.

As a result of further analysis we receive theoretical models of omnidirectional and in 22,5° direction
variograms (Figures 5 and 6) and cross-variograms (Figures 7 and 8) as well, which values are submitted in
Table 2. Selection parameters of models were carried out method with the help of least square.

4.3 Geostatistical estimation

The models described above (in the direction of 22,5°) were used in cokriging. Cokriging on a rectangular
grid 40 on 40 cells with the size of the cell 1.475 on 0.825 km was carried out. Calculations were executed with
the help of Multigeo software [5]. The obtained maps of estimations and the variances of Pb estimations are
presented in figures 12, 13, 14 and 15.

For comparison of the estimations of ordinary kriging (OK) with ordinary cokriging (made for all variables)
on the same grid using the same models of variograms were designed. Maps of estimation and variance of
estimation of ordinary kriging (OK) are given in figure 12.

Comparing maps of estimations we see, that ordinary kriging (OK) has overestimated Pb values in areas
where the measurements of Pb are not available. In these areas cokriging uses additional measurements of the
other metals for estimation. It has allowed to improve the estimation of Pb by cokriging in areas where values of
Pb are not present.

The estimation of ordinary kriging is more smeared. It means undervalueing of concentration in points with
high pollution and overestimation of concentration in points with low pollution. On the contrary ordinary kriging
(OK), cokriging has given considerably less smeared estimation. The supplement of additional variables for Pb
estimation with cokriging improves the estimation.

As it was mentioned above, cokriging should reduce estimation variances in comparison with ordinary
kriging. The maps of estimation variances given on figures 12 - 15 confirm this: in areas where there Pb
measurements are absent, estimation variance of cokriging falls below 100. Which is not observed on the map of
estimation variance of ordinary kriging. A nugget in zero of variograms and cross-variograms causes the high
value of Pb variance assessment.

However, after the number of particular variables exceeds certain level Pb estimation cannot be improved,
and even Pb values assessments are worsened. In the given work Pb estimation is worsened and is more
smoothed over in case of adding to the three existing additional variables (Zn, Cu, B) the fourth one.

The analysis of the results of kriging and cokriging with various numbers of additional variables was
conducted using the procedure of cross-validation. The results of cross-validation for various methods are
presented in tables 3, 4 and 5, and on figures 9, 10 and 11. It is seen from them, that the best results are observed
in the procedure of cokriging with the three particular additional variables (Zn, Cu, B).

11



5 Conclusions

In present work the approach to the mutual analysis of several spatially distributed variables is described and
applied. The geostatistical model of cokriging is applied to the data on the contamination of Geneva Lake with
metals. The values of contamination for different metals are correlated among themselves. To obtain the
assessment of Pb contamination the measurements of eight metals (Zn, Cu, Mn, Be, B, Ni, Cr, Cd) were used.
The results of estimation are compared with the results obtained by ordinary kriging using only one Pb variable
and also by cokriging varying additional variables and their number. According to the results of comparison it is
possible to draw the following conclusions:

1. The including of additional variables allows to correct the model of spatial correlation structure of
the data and to obtain more the improved assessments in those areas where there are no
measurements of the primary variable;

2. Combined consideration of two and more variables essentially improves final estimation of the basic
variable in the field of high values and prevents their smearing;

3. Cokriging gives the smaller mistake of estimation and correspondingly smaller uncertainty of
estimation in comparison with kriging;

4. Three different additional variables of the eight (Zn, Cu, B) are enough for cokriging to obtain better
estimation and estimation variation.

To analyze and visualize of raw data and results Multigeo and GeoStat Office research programs were used.
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Figure 1. Points where Pb is known

Figure 2. Points where other metals are known
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Figure 3. The frequency distribution of all concerned metals
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Figure 4. The correlation Pb with all concerned metals
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Figure 5. The omnidirectional variograms of all concerned metals

cd cr B
propes i e
FITerg fIre i
1Tt ETE s
Ll 13 4 wli 4
Sl e 5
L T T L T T ¢ T T
| e o | e et | e A
[z [E 10 1) E FE i s 155
M n Pb
Prrae R i
Ligas] ESITTR i
FALEL L 1Tk o 1
il LTt e
aileres ] TR i
e T T T T & T T
N | Ha | i i N i
FH 15 et 195 1is et [t 1is
L1l ;1 cu
i [XT] A
ETE it sid
1T el g1 i
14 LEAFE IR ain 4
EERE it 1=
L r r X T T & T T
Uz | ) | s | P | s | e
E L ") e Lis [ [E FEN

Figure 6. The variograms (in direction 22,5 9 of all concerned metals
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Figure 7. The omnidirectional cross-variograms of all concerned metals with Pb
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Figure 8. The cross-variograms (in direction 22,5 9 of all concerned metals with Pb
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Figure 9. Scatter plot of cross-validation of kriging Pb (left) and cokriging Pb with Cu (right)
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Figure 12. The kriging estimations of Pb (left) and the kriging variations of Pb (right)
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Figure 13. The cokriging estimations of Pb with Zn (left) and the cokriging variations of Pb with Zn (right)
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Figure 14. The cokriging estimations of Pb with Zn, Cu, B (left) and the cokriging variations of Pb with Zn, Cu,
B (right)
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Figure 15. The cokriging estimations of Pb with all variables (left) and the cokriging variations of Pb with all
variables (right)
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Table 1. The correlation coefficient of Pb and all concerned metals

Zn

Cu

Mn Cd

Ni Be

B Cr

Pb 0.616

0.378

0.177 0.463

0.435 0.379

-0.126 0.557

Table 2. The values of model variograms and cross-variograms (in direction 22,5°)

Variable Nugget Model Sill Radius
Cd 0.1138 Spherical 0.1498 30
Zn 662.5690 Spherical 1821.3650 30
Cu 97.6125 Spherical 487.2636 30
Mn 73418.4844 Spherical 363132.03.12 30
Cr 91.2362 Spherical 320.0846 30

B 16.0238 Spherical 85.0293 30

Be 0.1349 Spherical 0.6537 30
Ni 89.6864 Spherical 187.0863 30
Pb 70.2201 Spherical 132.2419 30
Pb-Cd 1.0079 Spherical 2.8556 30
Pb - Zn 112.3534 Spherical 298.0497 30
Pb - Cu 32.9582 Spherical 94.6861 30
Pb - Mn 273.1706 Spherical 1507.5059 30
Pb-Cr 14.7250 Spherical 125.8600 30
Pb-B 3.4318 Spherical -23.2637 30
Pb — Be 0.0168 Spherical 4.5325 30
Pb — Ni 13.3944 Spherical 69.4055 30

Table 3. The results of cross-validation of Pb using kriging

Errors Kriging
Mean error: 0.001515
Mean square error: 86.37
Sqrt (mean square error): 9.293
Mean standard error: -0.000578329

Mean square std. error: 0.9661
Sqrt (mean sqr. std. error): 0.9829
Mean estimation variance: 89.37
Sgrt (mean estim. var.): 9.454
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Table 4. The results of cross-validation of Pb using cokriging one, two and three variables

Errors Cokriging Cokriging Cokriging Cokriging
Zn Zn Cu ZnB ZnCuB
Mean error: 0.002741 -0.02151 0.002758 -0.02968
Mean square error: 59.10 58.72 58.69 58.25
Sqgrt (mean square error): 7.688 7.663 7.661 7.632
Mean standard error: 0.02322 0.01927 -0.007022 -0.007816
Mean square std. error: 1.736 2.001 0.9211 0.9403
Sgrt (mean sqr. std. Error): 1.318 1.415 0.9597 0.9697
Mean estimation variance: 112.61 111.72 132.81 131.58
Sgrt (mean estim. var.): 10.61 10.57 11.52 11.47

Table 5. The results of cross-validation of Pb at addition of the fourth additional variable and all variables

Errors Cokriging Cokriging Cokriging
ZnCuBCd Zn Cu B Mn ZnCuBCr

Mean error: -0.03234 -0.04132 -0.09369
Mean square error: 58.66 58.74 61.37
Sqrt (mean square error): 7.659 7.664 7.834

Mean standard error: -0.008283 -0.002159 -0.004565
Mean square std. error: 0.7589 0.7548 0.6727
Sqrt (mean sqr. std. Error): 0.8712 0.8688 0.8202
Mean estimation variance: 133.23 136.25 140.36
Sgrt (mean estim. var.): 11.54 11.67 11.85

Errors Cokriging Cokriging Cokriging

Zn Cu B Be Zn Cu B Ni All variables

Mean error: -0.06861 -0.07455 -0.01525
Mean square error: 60.63 58.81 60.35
Sqrt (mean square error): 7.786 7.668 7.769

Mean standard error: -0.008059 -0.1227 0.003977
Mean square std. error: 0.7253 4.690 0.3972
Sqrt (mean sqr. std. Error): 0.8517 2.166 0.6303
Mean estimation variance: 129.85 79.12 168.18
Sgrt (mean estim. var.): 11.40 8.895 12.97
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