

Poccuuckaa Akagauua C

РОССИЙСКАЯ АКАДЕМИЯ НАУК

ИНСТИТУТ ПРОБЛЕМ БЕЗОПАСНОГО РАЗВИТИЯ АТОМНОЙ ЭНЕРГЕТИКИ

RUSSIAN ACADEMY OF SCIENCES

NUCLEAR SAFETY INSTITUTE

Препринт ИБРАЭ № IBRAE- 1998-01

Preprint IBRAE-1998-01

В. В. Демьянов, М.Ф. Каневский, Е.А. Савельева, В.А. Тимонин, С.Ю. Чернов

СОВМЕСТНОЕ СТОХАСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОСТРАНСТВЕННОЙ ВАРИАБЕЛЬНОСТИ И НЕОПРЕДЕЛЕННОСТИ

⁹⁰SR И ¹³⁷CS

Moscow 1998

Демьянов В.В., Каневский М.Ф., Савельева Е.А., Тимонин В.А., Чернов С.Ю. СОВМЕСТНОЕ СТОХАСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОСТРАНСТ-ВЕННОЙ ВАРИАБЕЛЬНОСТИ И НЕОПРЕДЕЛЕННОСТИ ⁹⁰SR И ¹³⁷CS. Препринт № IBRAE-98-01. Москва. Институт проблем безопасного развития атомной энергетики РАН. Январь 1998. 27 с. — Библиогр.: 11 назв.

Аннотация

Работа посвящена совместному стохастическому моделированию пространственного распределения радиоактивного загрязнения ⁹⁰Sr и ¹³⁷Cs. Данные по дополнительной переменной ¹³⁷Cs значительно улучшают качество моделирования при недостаточном количестве измерений ⁹⁰Sr. Результаты совместного моделирования сравниваются с последовательным Гаусовым моделированием ⁹⁰Sr. В работе использованы реальные данные Чернобыльских выпадений.

©ИБРАЭ РАН, 1998

Demyanov V.V., Kanevski M.F., Savelyeva E.A., Timonin V.A., Chernov S.Yu. STOCHASTIC COSIMULATION OF SPATIAL VARIABILITY AND UNCERTAINLY OF ⁹⁰Sr AND ¹³⁷Cs. Preprint IBRAE-98-01. Moscow. Nuclear Safety Institute. January 1998. 27 p. — Refs.: 11 items.

Abstract

The work deals stochastic cosimulation of ⁹⁰Sr and ¹³⁷Cs soil contamination after the Chernobyl fallout. Cosimulation is to model spatial variability and uncertainty of the spatial distribution. Cosimulation results are significantly improved by additional data on the secondary variable ⁹⁰Sr, which has more measurements than ⁹⁰Sr. Cosimulations are compared with sequential Gaussian simulations of single ⁹⁰Sr. All the modelling is applied to real data on the Chernoby fallout.

©Nuclear Safety Institute, 1998

Совместное стохастическое моделирование пространственной вариабельности и неопределенности ⁹⁰Sr и ¹³⁷Cs

В. В. Демьянов, М.Ф. Каневский, Е.А. Савельева, В.А. Тимонин, С.Ю. Чернов

ИНСТИТУТ ПРОБЛЕМ БЕЗОПАСНОГО РАЗВИТИЯ АТОМНОЙ ЭНЕРГЕТИКИ 113191, Москва, ул. Б. Тульская, 52 тел.: (095) 955-26-10, факс: (095) 958-11-51, эл. почта: vasia@ibrae.ac.ru

Содержание

Содержание	3
Введение	3
Теория последовательных Гауссовых косимуляций	4
Практический алгоритм последовательных Гауссовых косимуляций	6
Особенности и преимущества метода	8
Линейная модель корегионализации	9
Совместное последовательное Гауссово моделирование ⁹⁰ Sr и ¹³⁷ Cs Чернобыльских выпадений	11
Выводы	3

Введение

Загрязнение почвы радионуклидами в результате Чернобыльской аварии имеет крайне сложный пространственный характер. Основными отличительными чертами Чернобыльских выпадений являются пятнистость, высокая вариабельность, анизотропность, нестационарность, а также наличие пространственных структур на различных масштабах. Такой характер данных определялся многочисленными факторами, проявившимися во время выброса, переноса, выпадения и миграции радионуклидов. К ним относятся особенности динамики источника, климатические условия, орография и характеристики подстилающей поверхности, различные механизмы выпадения радионуклидов на поверхность, и т. п.

Для анализа радиоактивного загрязнения поверхности применяются многочисленные методы в том числе детерминистические, геостатистические, искусственные нейронные сети [1, 2, 3]. При картировании загрязнения все вышеперечисленные подходы дают единственную оценку загрязнения для одной выбранной модели.

Стохастическое моделирование является альтернативным подходом к пространственной интерполяции. Оно позволяет оценить пространственную вариабельность и неопределенность данных. В отличие от детерминистических интерполяторов и геостатистических оценивателей, которые усредняют и сглаживают вариабельность исходных данных, стохастические методы позволяют воспроизвести случайный пространственный процесс на основе определенных качественных и количественных критериев исходного распределения. В то время как интерполяционная оценка в точке единственна для заданных модели и ее параметров, результатом стохастического моделирования является набор оценок (реализаций) значения функции в точке для заданной модели.

Стохастическое моделирование позволяет сгенерировать большое множество равновероятных реализаций, обладающих свойствами исходного распределения:

- одинаковой плотностью распределения с исходным распределением;
- одинаковой пространственной структурой с исходным распределением.
- точное воспроизводство исходных данных.

Таким образом, цели моделирования и оценивания различны: стохастическое моделирование призвано оценить пространственную вариабельность и неопределенность данных, получить вероятностные оценки превышения заданного уровня, и оценки с заданным уровнем вероятности

превышения. Такие оценки крайне важны для поддержки принятия решения, как и анализ неопределенности пространственной оценки.

Стохастические методы основываются на предположении, что анализируемые данные являются реализациями случайного процесса. Это позволяет, используя имеющиеся измерения как зафиксированные значения (условное моделирование), получить бесконечно много значений (реализаций) переменной в точке оценивания. Построенные таким образом стохастические реализации обладают той же функцией распределения и такой же пространственной корреляционной структурой, что и исходные данные. Наличие нескольких равновероятных оценок в одной точке позволяет оценить неопределенность оценивания и построить вероятностные оценки – оценки вероятности превышения заданного уровня загрязнения или оценки, которые могут быть превышены действительными значениями загрязнения с заданной вероятностью. Один из стохастических методов – последовательное Гауссово моделирование успешно применялся к Чернобыльским выпадениям в [4, 5].

Основными долгоживущими загрязнителями почвы в Чернобыльских выпадениях являются ¹³⁷Cs и 90 Sr, которые сильно коррелированны между собой в силу особенностей источника и процессов переноса загрязнения. Как уже отмечалось [6], совместное рассмотрение 90 Sr и 137Cs может значительно улучшить результаты оценки 90 Sr за счет дополнительной информации о 137Cs. Целью настоящей работы является совместное стохастическое моделирование 90 Sr и 137 Cs. Они обычно сильно коррелированны друг с другом в рассматриваемой области, что обусловлено особенностями источника и характером выпадений. Проб 90 Sr обычно меньше, чем проб 137 Cs, поскольку последние значительно дешевле и проще в обработке. Такое положение затрудняет анализ загрязнения 90 Sr и з-за недостаточного количества данных по 90 Sr и ограниченного размера области мониторинга 90 Sr и 137 Cs) в область экстраполяции (где есть измерения и 90 Sr и 137 Cs) в область экстраполяции (где есть измерения и 90 Sr и 137 Cs) в область экстраполяции (где есть только измерения 137 Cs). Такое исследование было проведено с помощью геостатистического оценивателя – кокригинга [6]. Настоящая работа представляет собой продолжение многопеременного анализа Чернобыльских выпадений.

Метод последовательных Гауссовых косимуляций, примененный в работе, является развитием последовательного Гауссова моделирования для случая моделирования двух и более переменных непрерывно распределенных в пространстве. Этот метод воспроизводит одномерные распределения и авто- и кросс-вариограмные структуры переменных. Являясь одним из методов стохастического моделирования, он сохраняет основные аспекты стохастического подхода: условность (по отношению к исходным данным – их точное воспроизводство в точках измерений), анизотропию, разнообразие корреляционных структур. Универсальность метода позволяет применять его в общем случае в различных областях, например, горнорудное дело, гидрология, окружающая среда.

Теория последовательных Гауссовых косимуляций

Рассмотрим набор из *K* переменных, $[z_k(x), k=1,...,K]$, измеренных в точках x - в пространстве. Если K=2, то $z_1(x_0)$ и $z_2(x_0)$ являются значениями двух переменных в точке оценивания x_0 . Проблема состоит в генерации пространственных моделей эти переменных так, чтобы:

- были воспроизведены некоторые статистические параметры распределений переменных, взятых вместе или по отдельности;
- были точно воспроизведены значения переменных в точках, где они известны.

Геостатистика интерпретирует *К* переменных $[z_k(x), k=1,...,K]$, как реализации *К* случайных переменных, обозначенных $[Z_k(x), k=1,...,K]$. Этот набор случайных пространственных переменных составляет *К* случайных функций $[Z_k(x), k=1,...,K]$. В рамках такой системы проблема заключается в генерации совместных реализаций К случайных функций таких, чтобы:

1. были воспроизведены распределение и вариограмма каждой случайной функции;

2. были воспроизведены кросс-вариограммы между случайными функциями;

3. значения в точках измерений совпадали с исходными.

В основе генерации реализаций функции Z в N точках [*u*₁,...,*u*_N] лежит выборка из условной функции распределения:

 $F(u_1,...,u_N; z_1,...,z_N|(n)) = Prob\{Z(u1) \le z_1,...,Z(u_N) \le z_N|(n)\}$

Принцип последовательного моделирования выражается далее следующим образом:

 $F(u_1,...,u_N; z_1,...,z_N/(n)) = F(u_N; z_N/(n+N-1)) \cdot F(u_{N-1}; z_{N-1}/(n+N-2)) \cdot ... \cdot F(u_1; z_1/(n))$

где $F(u_i; z_N | (n+N-1))$ – условная функция распределения Z(u), определяемая *n* исходными данными и *N*-1 реализациями $Z(u_i) = z(u_i), j = 1, ..., N-1$.

На первом этапе моделирования предполагается стационарность каждой случайной функции Z_k(x) и существование случайной функции Y_k(x) такой, что

 $Y_k(x) = \phi_k[Z_k(x)],$ и $Y_k(x) \sim N(0,1),$

где ϕ_k – однозначная функция Гауссова преобразования.

Преобразованные переменные называются нормальными (normal score). Функции $[Y_k(x), k=1,...,K]$ являются стационарными в строгом смысле и распределены по стандартному нормальному закону по построению. Как следствие, полный совместный вероятностный закон набора $[Y_k(x), k=1,...,K]$ известен, если известны среднее значение и авто- и кросс-ковариационные функции. Среднее значение равно нулю в силу стандартного нормального распределения. Авто- и кросс-ковариации выражаются через авто- и кросс-вариограммы следующим образом:

$$C_{kk'}(h) = C_{kk'}(0) - \gamma_{kk'}(h), \quad k = 1, ..., K, \quad k' = 1, ..., K,$$

где $C_{kk'}(h)$ – ковариация а $\gamma_{kk'}(h)$ – кросс-вариограмма между двумя переменными $z_{k \ u} \ z_{k'}$ разделенными расстоянием h.

Второй этап состоит в последовательных симуляциях (моделировании) нормализованных значений, проводящихся по следующему алгоритму:

1. Случайный выбор местоположения х₀, которое еще не было промоделировано.

2. Использование кригинга (простого или обычного) для расчета оценки в точке x₀, используя нормальные (normal score) значения из окрестности – как измеренные так и *уже промоделированные*.

3. Построение нормального закона распределения на основе оценки и вариации кригинга, взятых в качестве соответственно математического ожидания и вариации нормального распределения.

4. Случайный выбор реализации из условного функции распределения, определяющей вектор промоделированных нормальных значений.

5. Алгоритм повторяется до получения реализаций во всех требуемых точках.

После прохождения всех точек сетки промоделированные нормальные значения преобразуются обратно, используя обратное Гауссово преобразование.

K случайных функций [$Y_k(x)$, k=1,...,K] распределены совместно мультинормально. Это подразумевает, что мультинормально распределенный случайный вектор состоит из

• случайных переменных из окрестности x₀;

• промоделированных случайных переменных в точке х₀.

Для простоты введем следующие обозначения:

 X_1 – вектор, состоящий из случайных переменных из окрестности x_0 . Этот вектор состоит из N*K компонент, где N число точек "измерений" в окрестности x_0 , а K число переменных. В большинстве случаев число компонент будет меньше NK, поскольку не все K переменных имеют "измерения" во всех N токах. Под "измерениями" понимаются как измеренные, так и уже промоделированные переменные.

 X_2 – случайный вектор, компонентами которого являются случайные переменные моделируемые в точке x_0 . Этот случайны вектор может иметь до *K* компонент, поскольку некоторые переменные могут быть уже измерены в данной точке.

X – случайный вектор, для которого: $X^{T} = (X_{1}^{T}, X_{2}^{T})$.

Многопеременное распределение случайного вектора Х определяется следующим образом:

 $X \sim N(\mu, C),$

где среднее значение вектора $\mu=0$ по построению, а компоненты ковариационной матрицы *C* определяются с помощью авто- и кросс-ковариационных функций [C_{kk}·(h), k, k'=1,...,K]. Разделение X на X_1 и X_2 , и среднего значения вектора и ковариационной матрицы соответственно приводит к:

$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim N \left(\mu = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} \right)$$

Условное распределение X_2 , определяемое известными значениями $X_1(x_1)$, является мультинормальным:

$$(X_2|X_1 = x_1) = X_{2|1} \sim N(\mu_{2|1} = C_{21}C_{11}^{-1}X_1, C_{22|1} = C_{22} - C_{21}C_{11}^{-1}C_{12}),$$
(1)

где $\mu_{2|1}$ – условное среднее значение вектора и $C_{22|1}$ – ковариационная матрица. Реализация условного случайного вектора $X_{2|1}$:

5

$$x_{2|1} = L_{22|1}r_2 + C_{21}C_{11}^{-1}x_1, \qquad (2)$$

где r_2 – вектор независимых стандартных Гауссовых значений, и $L_{22|1}$ – нижний треугольник матрицы LU декомпозиционной ковариации $C_{22|1}$:

$$C_{22|1} = L_{22|1} U_{22|1}$$
.

Уравнение (2) может быть упрощено до:

$$x_{2|1} = L_{22}^{-1}r_2 + A_{21}L_{11}^{-1}x_1 , \qquad (3)$$

где L_{22}^{-1} , A_{21} получаются из LU декомпозиционной ковариационной матрицы C:

$$C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = LU = \begin{pmatrix} L_{11} & 0 \\ A_{21} & L_{22} \end{pmatrix} \begin{pmatrix} U_{11} & B_{12} \\ 0 & U_{22} \end{pmatrix}$$

Практический алгоритм последовательных Гауссовых косимуляций

На практике, в процессе последовательных Гауссовых косимуляций используется ряд необходимых но оправданных аппроксимаций.

Последовательный анализ пространственных данных имеет первостепенной значение и должен предшествовать моделированию. На этом этапе данные подготавливаются, проверяются на возможные ошибки и недостаток стационарности. Значительная нестационарность данных должна быть предметом особого внимания. Так например, области с различным статистическим описанием должны рассматриваться отдельно. При наличие трендов, они выделяются и рассматриваются отдельно, а затем по окончании моделирования добавляются. На этом же этапе проводится декластеризация, если этого требует сеть мониторинга.

1. Нормальное преобразование данных. *К* Гауссовых преобразований [ϕ_k , k=1,...,K] производятся путем постановки в соответствие кумулятивной функции распределения переменной кумулятивного стандартного нормального распределения:

$$G(y) = F_k(z) \Leftrightarrow y = \phi_k(z) = G^{-1}[F_k(z)] \Leftrightarrow z = \phi_{-k}^{-1}(y) = F^{-1}[G(y)],$$

где $F_k(\bullet)$ – кумулятивное распределение частоты *k*-й переменной, а G(•) – кумулятивное стандартное нормальное распределение. Практическая реализация прямого и обратного нормального преобразования проиллюстрирована на рисунке A.

Рисунок А. Графическая иллюстрация преобразования функции F(z) в стандартную нормальную функцию G(y) посредством их кумулятивных функций распределения.

2. Проверка на мультинормальность. Следующем шагом является предположение совместной мультинормальности распределений К нормальных случайных функций $[Y_k(x), k=1,...,K]$. Полученная в результате нормального преобразования переменная распределена одномерно нормально по построению. Это, однако, является необходимым но не достаточным условием мультинормальности ее пространственного распределения. Следующим необходимым условием является бинормальность –

нормальность кумулятивной функции распределения любой пары значений Y(x) и Y(x+h). В наиболее распространенном случае неполных измерений на нерегулярной сетке не существует теста на мультинормальность. Однако, можно использовать несколько проверок на бинормальность, что является необходимым но недостаточным условием для мультинормальности.

Для проверки на бинормальность условной функции распределения любого набора пар данных $\{y(x_i), y(x_i+h), i=1,...,N(h)\}$ используется ковариация $C_Y(h)$. Существует аналитическое и табулированное соотношения между ковариацией $C_Y(h)$ и значением стандартной нормальной функции распределения:

$$Prob\{Y(x) \le y_p, Y(x+h) \le y_p\} = p^2 + \frac{1}{2\pi} \int_{0-}^{arcsimC_Y(h)} \exp\left(-\frac{y_p^2}{1+\sin\theta}\right) d\theta$$

где $y_p = G^{-1}(p)$ – стандартная нормальная *p*-квантиль а $C_Y(h)$ – коррелограм стандартной нормальной случайной функции Y(x).

Бинормальная вероятность является нецентральной индикаторной ковариацией для порога y_n:

 $Prob\{Y(x) \le y_{p}, Y(x+h) \le y_{p}\} = E\{I(x,p) \cdot I(x+h,p)\} = p - \gamma(h,p)$

где I(x,p)=1, если $Y(x) \leq p_3$, =0, в противном случае. $\gamma(h,p)$ – индикаторная полу-вариограмма для р-квантили отсечения y_p .

3. Вариография нормальных переменных. Следующим шагом является построение авто- и кроссвариограмм для нормальных (normal score) значений переменных и их моделирование с использованием линейной модели корегионализации. Эта задача достаточно просто решается при наличии хорошей программы моделирования вариограмм и достаточного количества измерений переменных. В случае значительного недостатка измерений по одной из переменных должен быть принят ряд предположений для соответствующих авто- и кросс-вариограмм.

Приведенный ниже алгоритм стохастического моделирования (п. 4-8) повторяется для построения каждой новой стохастической реализации..

4. Эффект экранирования. Алгоритм последовательного моделирования основывается на эффекте экранирования [8]. Эффект экранирования состоит в уменьшении веса точек попадающих между одной из точек измерения и точкой оценивания, что может привести к появлению отрицательных весов. На практике не обязательно использовать все существующие значения измерений для построения условного распределения в точке оценивания. Необходимо ограничить используемые условные измерения окрестностью точки оценивания. Практические испытание показали, что хороших результатов можно добиться при использовании 16 наиболее близких значений, или по 2 из каждой октанты при поиске соседей по октантам [8].

5. Выбор последовательности оценивания точек. По теории используется любой путь от одной точки оценивания к другой. На практике случайный путь предпочтительнее регулярного, для того чтобы избежать возможного распространения артефактов в результатах. Как следствие, невозможно ускорить моделирование из-за нерегулярности в конфигурации условных значений. Расчет условных векторов и матриц из уравнений (1), (2), (3) повторяется в каждой новой точке оценивания. Однако, возможно получить несколько реализаций "по цене одной", если выбран один и тот же случайный путь и если различные наборы случайных чисел используются в уравнениях (2) или (3).

Если моделирование проводится на регулярной сетке, то имеет преимущества концепция "промежуточных" сеток, в частности при воспроизводстве вариограмных структур с очень длинными радиусами. При таком подходе каждая сетка дополняется следующей, причем последней является сеть на которой проводится моделирование. Моделирование начинается с самой грубой сетки, и продолжается пока не моделируется самая мелкая сетка. В каждой из сеток выбирается случайный путь следования от узла к узлу. Количество промежуточных сеток зависит от радиусов вариограмм и от конечного размера ячеек сетки. Преимуществами такой схемы является более высокая скорость и меньший объем требуемой памяти. Программа может быть оптимизирована в блоках поиска соседей, построения ковариационных матриц, и т. д. Другим преимуществом является большая стабильность моделирования и получаемых симуляций – после моделирования одной сетки условные значения (по крайней мере промоделированные) располагаются регулярно, что предотвращает возможную сильную кластеризацию.

6. Простой кокригинг. В каждой точке оценивания решается система уравнений простого кокригинга с использованием соседей из выбранной окрестности. При этом учитываются как измерения, так и уже промоделированные в предыдущих точках значения. Оценка простого кокригинга для случая двух переменных имеет следующий вид [11]:

$$Y_{SCK}^{(1)*}(x) - m_1 = \sum_{\alpha_1=1}^{n_1(x)} \lambda_{\alpha_1}^{SCK}(x) \Big(Y_1(x_{\alpha_1}) - m_1 \Big) + \sum_{\alpha_2=1}^{n_2(x)} \lambda_{\alpha_2}^{SCK}(x) \Big(Y_2(x_{\alpha_2}) - m_2 \Big)$$

где $Y_{SCK}^{(1)*}(x)$ – оценка простого кокригинга основной переменной z_I в точке x.

Веса кокригинга вычисляются из следующей системы уравнений [11]:

$$\begin{cases} \sum_{\beta_{1}=1}^{n_{1}(x)} \lambda_{\beta_{1}}^{SCK}(x) \cdot C_{11}(x_{\alpha_{1}} - x_{\beta_{1}}) + \sum_{\beta_{2}=1}^{n_{2}(x)} \lambda_{\beta_{2}}^{SCK}(x) \cdot C_{12}(x_{\alpha_{1}} - x_{\beta_{2}}) = C_{11}(x_{\alpha_{1}} - x), \quad \alpha_{1} = 1, \dots, n_{1}(x) \\ \sum_{\beta_{1}=1}^{n_{1}(x)} \lambda_{\beta_{1}}^{SCK}(x) \cdot C_{21}(x_{\alpha_{2}} - x_{\beta_{1}}) + \sum_{\beta_{2}=1}^{n_{2}(x)} \lambda_{\beta_{2}}^{SCK}(x) \cdot C_{22}(x_{\alpha_{2}} - x_{\beta_{2}}) = C_{21}(x_{\alpha_{21}} - x), \quad \alpha_{2} = 1, \dots, n_{2}(x) \end{cases}^{\Gamma De}$$

 $C_{ij}(h)$ – соответствующие собственные и кросс-ковариации переменных основной y_1 и дополнительной y_2 для $h = x_i - x_j$:

$$C_{ij}^{R}(h) = E\Big\{R_{i}(x) \cdot R_{j}(x+h)\Big\} = E\Big\{\Big(Y_{i}(x) - m_{i}\Big) \cdot \Big(Y_{j}(x) - m_{j}\Big)\Big\} = C_{ij}(h)$$

Вариация простого кокригинга вычисляется следующим образом:

$$\sigma_{SCK}^{2}(x) = C_{11}(0) - \sum_{\alpha_{1}=1}^{n_{1}(x)} \lambda_{\alpha_{1}}^{SCK}(x) \cdot C_{11}(x_{\alpha_{1}} - x) - \sum_{\alpha_{2}=1}^{n_{2}(x)} \lambda_{\alpha_{2}}^{SCK}(x) \cdot C_{21}(x_{\alpha_{2}} - x)$$

7. Построение нормальной функции распределения. Нормальная функция распределения строится в каждой точке оценивания на основе среднего значения и стандартного отклонения, в качестве которых берутся оценка $Y^*_{SCK}(x)$ и ошибка оценки σ_{SCK} простого кокригинга в данной точке, полученные в п. 5.

8. Выбор значения из функции распределения. Промоделированное значение в точке выбирается случайным образом из построенной функции распределения [11]:

$$Y^{(l)}(x) = Y^*_{SCK}(x) + E(x)$$

где компонента ошибки E(x) независима от $Y^*_{SCK}(x)$, $E\{E(x)\}=0$ и $Var\{E(x)\}=\sigma_{SCK}^2$.

Далее оно добавляется в набор данных для участия в последующих оценках.

9. Обратное преобразование. После прохода через все точки оценивания полученные нормальные значения оценок $\{y^{(l)}(x), x \in A\}$ преобразуются обратно в абсолютные значения исходной функции: $\{z^{(l)}(x) = \phi^{-1}(y^{(l)}(x), x \in A\}.$

Особенности и преимущества метода

Если модель согласуется с данными, то последовательные Гауссовы косимуляции воспроизводят следующий набор переменных:

- стандартное нормальное распределение для каждой преобразованной переменой;
- вариограммы преобразованных переменных;
- кросс-вариограммы между преобразованными переменными;
- значения преобразованных переменных в точках измерений.

При обратном преобразовании промоделированных значений воспроизводятся распределения и измерения исходных переменных. Это также предполагает воспроизводство авто- и кросс-вариограмм исходных переменных, которые не были построены.

Метод последовательного совместного Гауссова моделирования (косимуляций) имеет ряд преимуществ, наиболее явные из которых простота и универсальность. Простота метода основана на понятиях вариограммы и стохастического моделирования и может быть кратко изложен в этих терминах. Универсальность метода важна при его приложении к различным типам задач. Совместное моделирование приносит успех при применении к коррелированным переменным, и решение воспроизводит пространственную корреляцию между ними. Это, однако, не обязательно подразумевает непротиворечивость с физическими процессами, обуславливающими корреляцию.

Метод является интеграционным. Для введения анизотропии, усиление условности, или моделирования на нерегулярных сетках не требуется ни каких специальных модернизаций. Вычислительные преимущества моделирования на регулярных сетках оставляют в стороне моделирование на нерегулярных сетках, в особенности при неизменной поддержке (support) промоделированных значений.

Метод не ограничен двумя переменными – можно рассматривать три и более переменных. Увеличение количества рассматриваемых переменных ведет к усложнению модели корегионализации и увеличению времени расчета. Независимо от количества переменных возможны следующие два подхода.

1. Улучшение моделирования одной или нескольких переменных, используя информацию по другим переменным.

2. Прямое моделирование всех переменных.

Совместное Гауссово моделирование воспроизводит уровень корреляции между переменными. В случае двух переменных, если они независимы, то их реализации тоже будут независимыми, как в случае отдельного моделирования каждой из них методом последовательного Гауссова моделирования. Если они полностью зависят друг от друга, то их реализации будут идентичными. Возможны все промежуточные случаи при различных уровнях корреляции между переменными. Это является преимуществом по сравнению с методом учета внешнего дрейфа, когда не учитывается уровень корреляции между оцениваемой переменной и внешним дрейфом.

Возможно моделирования реализаций различных коррелированных переменных, у которых разные масштабы вариабельности, например, одно распределение не такое гладкое как другое.

Между применением метода в двумерном и трехмерном случаях не существует принципиальной разницы. Это остается верным и при недостатке информации по одной из переменных в одном из направлений. Вариограмма, являясь в большой степени интуитивным инструментом, может быть промоделирована при недостатке информации на основе личной экспертизы.

У метода существует ряд ограничений. Во-первых предположение о стационарности. Эта проблема может быть решена путем разбиения области на зоны стационарности. Как это упоминалось выше, пространственный тренд может быть предварительно выделен из данных и рассмотрен отдельно и добавлен обратно после моделирования. Являясь принятой аппроксимацией, такой подход может быть не приемлем при зависимости между трендами коррелированных переменных. В некоторых случаях очевидный тренд может быть сохранен при наличии достаточного количества условных данных.

Вторым ограничением является гипотеза о мультинормальности. В случае неприемлемости мультинормальной гипотезы отдается предпочтение другим непараметрическим моделям, например Марковские-Баесовские индикаторные косимуляции.

Третьим ограничением является экранный эффект (screen effect). Может оказаться, что он не достаточно хорош, что, однако, случается не слишком часто.

Другое ограничение – модель корегионализации для авто- и кросс-вариограмм. Может быть использована любая положительно определенная модель. На практике используется линейная модель корегионализации. Такую модель не всегда просто подогнать, что требует применение хорошей программы вариограмного моделирования.

Линейная модель корегионализации

Существует два подхода к сокращению анализа данных по многим переменным и замене его анализом одно переменного набора данных. В одном проводится анализ одной или более линейных комбинаций компонент, и требуется определить подходящие линейные комбинации. Другой подход представляет различные компоненты как линейную комбинацию некоррелированных частей, так что каждая из них может бать проанализирована отдельно. Оба этих несвязанных между собой подхода используются в современной геостатистике.

Линейная модель корегионализации предполагает, что каждая компонента вектора случайной функции может быть представлена как линейная комбинация некоррелированных компонент. Они обычно представляются в виде моделей ковариации или вариограмм одного типа но с разными радиусами корреляции. Линейная модель корегионализации имеет преимущество в том, что условие положительной определенности сводится к проверке положительной определенности постоянной матрицы и наиболее полезна при недостатке измерений. Недостатком модели является ограниченный выбор моделей кросс-вариограмм и кросс-ковариаций. Обобщая другими словами, если каждая компонента представлена как линейная комбинация некоррелированных компонент, то это соответствует диагонализации матрицы структурной функции [9].

Рассмотрим вектор значений случайной функции $Z(x) = [Z_1(x), ..., Z_m(x)]$. Пусть $Y_1(x), ..., Y_p(x)$ некоррелированные случайные функции, где *p* может быть больше или меньше *m*. Стационарность компонент Y следует из стационарности компонент Z и наоборот. Предположим, что:

$$Z_{j}(x) = \sum_{k} Y_{k}(x) \cdot a_{kj}(x), \quad j = 1, ..., m$$
(4)

В матричной форме (4) представляется:

$$(x),...,Z_{m}(x)] = [Y_{1}(x),...,Y_{p}(x)] A$$
(4a)

Пространственные функции Z соотносятся с пространственными функциями Y следующим образом:

$$C_{Z}(h) = A^{T}C_{Y}(h)A$$

$$\gamma_{Z}(h) = A^{T}\gamma_{Y}(h)A$$
(5)
(6)

$$\chi(\mathbf{n}) = \mathbf{A} \ \gamma_{\mathbf{Y}}(\mathbf{n}) \mathbf{A} \tag{6}$$

где $C_Z(h)$ и $C_{\gamma}(h)$ – ковариационные матрицы с компонентами:

 $[Z_1]$

$$C_{st,Z}(h) = Cov\{Z_s(x+h), Z_t(x)\}$$
(7)

$$C_{uv,Y}(h) = Cov\{Y_u(x+h), Y_v(x)\} =$$

а $\gamma_{Z}(h)$ и $\gamma_{Y}(h)$ – матрицы вариограмм с компонентами:

$$\gamma_{\text{st,Z}}(h) = \text{Cov}\{Z_{\text{s}}(x+h) - Z_{\text{s}}(x), Z_{\text{t}}(x+h) - Z_{\text{t}}(x)\}$$
(7a)

$$\gamma_{uv,Y}(h)$$
=Cov{Y_u(x+h)-Y_u(x), Y_v(x+h)-Y_v(x)}=
=0, при и≠v (8a)

В уравнениях (7а) и (8а) используются стандартные кросс-вариограммы а не псевдо-кроссвариограммы [10].

Применяя уравнения (7) и (8) или (7а) и (8а) получим:

$$C_{st,Z}(h) = \sum a_{su} C_{uu,Y}(h) \cdot a_{ut} = \sum b_{st}^{u} C_{uu,Y}(h)$$
(9)

или

$$C_Z(h) = \sum B^u C_{uu,Y}(h) \tag{10}$$

Линейная модель корегионализации обычно записывается в виде (10). По этому построению коэффициенты В^и будут автоматически удовлетворять требуемому условию положительной определенности.

Для случая двух переменных U и V модели авто- и кросс вариограмм строятся следующим образом:

$$\gamma_{U}(\mathbf{h}) = u_{0}\gamma_{0}(\mathbf{h}) + u_{1}\gamma_{1}(\mathbf{h}) + \dots + u_{m}\gamma_{m}(\mathbf{h})$$

$$\gamma_{V}(\mathbf{h}) = v_{0}\gamma_{0}(\mathbf{h}) + v_{1}\gamma_{1}(\mathbf{h}) + \dots + v_{m}\gamma_{m}(\mathbf{h})$$

$$\gamma_{UV}(\mathbf{h}) = w_{0}\gamma_{0}(\mathbf{h}) + w_{1}\gamma_{1}(\mathbf{h}) + \dots + w_{m}\gamma_{m}(\mathbf{h})$$
(11)

где ү_U(h), ү_V(h), ү_{UV}(h) – авто- и кросс-вариограмные модели для U и V соответственно. Базисные модели задаются $\gamma_0(h)$, $\gamma_1(h)$, ..., $\gamma_m(h)$; *u*, *v*, *w* – коэффициенты, возможно отрицательные.

Уравнения (11) можно записать в матричной форме:

Комбинация первых базисных моделей $\gamma_0(h)$.

$$\begin{bmatrix} \gamma_{U,0}(h) & \gamma_{UV,0}(h) \\ \gamma_{VU,0}(h) & \gamma_{V,0}(h) \end{bmatrix} = \begin{bmatrix} u_0 & w_0 \\ w_0 & v_0 \end{bmatrix} \cdot \begin{bmatrix} \gamma_0(h) & 0 \\ 0 & \gamma_0(h) \end{bmatrix}$$
(12)

Комбинация вторых базисных моделей $\gamma_1(h)$.

$$\begin{bmatrix} \gamma_{U,1}(h) & \gamma_{UV,1}(h) \\ \gamma_{VU,1}(h) & \gamma_{V,1}(h) \end{bmatrix} = \begin{bmatrix} u_1 & w_1 \\ w_1 & v_1 \end{bmatrix} \cdot \begin{bmatrix} \gamma_1(h) & 0 \\ 0 & \gamma_1(h) \end{bmatrix}$$
(13)

Комбинация *т*-х базисных моделей $\gamma_0(h)$.

$$\begin{bmatrix} \gamma_{U,m}(h) & \gamma_{UV,m}(h) \\ \gamma_{VU,m}(h) & \gamma_{V,m}(h) \end{bmatrix} = \begin{bmatrix} u_m & w_m \\ w_m & v_m \end{bmatrix} \cdot \begin{bmatrix} \gamma_m(h) & 0 \\ 0 & \gamma_m(h) \end{bmatrix}$$
(14)

Для удовлетворения условия положительной определенности линейной модели (11), достаточно положительности коэффициентов *u*, *v* и *w* в уравнениях (12)-(14). Это достигается наложением на коэффициенты следующих условий:

$$u_i > 0, v_i > 0, Для всех i=0,...,m$$

 $u_i \cdot v_i > w_i \cdot w_i, Для всех i=0,...,m$ (15)

Ограничение, накладываемое условиями (15), может значительно усложнить моделирование. Часто одна из авто- или кросс-вариограмных моделей не подгоняется под соответствующую экспериментальную вариограмму, в то время как другие модели подходят хорошо. В таком случае следует рассматривать каждую индивидуальную модель как часть общей модели и судить о качестве подгонки в соответствии с этим. Из уравнения (15) следует два полезных замечания для моделирования корегионализации. Во-первых, базисная модель, содержащаяся в любой из авто вариограмных моделей, не обязательно должна быть включена в кросс-вариограмную модель. Во-вторых, любая базисная модель, содержащаяся в модель все модели автовариограммы.

Совместное последовательное Гауссово моделирование ⁹⁰Sr и ¹³⁷Cs Чернобыльских выпадений

Радиоактивное загрязнение в результате Чернобыльской аварии образовалось на обширных территориях. Основными пространственными загрязнителями являются долгоживущие изотопы 90 Sr и 137 Cs. Среди пространственных особенностей загрязнения следует отметить их высокую вариабельность, пятнистость и наличие многочисленных крайних значений. Анализ и картирование пространственного загрязнения усложняется его комплексной структурой на различных масштабах, обусловленной различными факторами влияния (погодными условиями, типом подстилающей поверхности, орографическими эффектами, источником, и др.). Распределения 90 Sr и 137 Cs сильно связаны между собой в силу особенностей источника. Коэффициент корреляции между ними более 70%. Это позволяет применить совместные методы анализа пространственного распределения.

В исследовании были использованы данные по загрязнению 90 Sr и 137 Cs западной части Брянской области – наиболее загрязненной части России. Анализируемые данные состоят из 286 точек измерений 90 Sr и 680 точек измерений 137 Cs (см. Рис. 1, 2). Они уже применялись в различных исследованиях и их характер достаточно хорошо выяснен. Данные были подвергнуты нормальному преобразованию. Гистограммы и нормальная бумага для исходных и преобразованных данных представлены на рисунках 3-6. На нормальной бумаге данные, подчиняющиеся Гауссова закону распределения, располагаются вдоль прямой y=x.

Для принятия гипотезы о мультинормальности полученных распределений преобразованных данных был проведен тест на бинормальность. Были построены индикаторные вариограммы для трех отсечений – нижней и верхней квартилей и медианы – для модели вариограмм нормализованных данных (normal score) и исходных данных. Бинормальность иллюстрируется достаточно хорошим совпадением этих индикаторных вариограмм на рисунках 7, 8.

Проверка на бинормальность преобразованных данных также проводилась с помощью следующего качественного теста:

$$\frac{\sqrt{\gamma(h)}}{M(h)} = \sqrt{\pi} \tag{16}$$

где $\gamma(h)$ – вариограмма, а M(h) – мадограмма, определяемые следующим образом для пространственной функции Z, имеющей значения [Z(x₁),...,Z(x_N)]:

$$M(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} |Z(x_i) - Z(x_i - h)|$$

$$\gamma(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} (Z(x_i) - Z(x_i - h)^2)^2$$

где *h* – расстояние между точками (лаг).

На рисунке 9 приведена зависимость $\sqrt{\gamma(h)}/M(h)$ от расстояния *h* (км). Можно говорить о бинормальности ⁹⁰Sr и несколько худшей бинормальности ¹³⁷Cs.

Дальнейший структурный анализ (вариография) проводился для нормализованных данных. После применения линейной модели корегионализации были получены следующие модели авто- и кроссвариограмм (см. Рис. 11, 12):

Переменная	Наггет	Тип модели	Плато (sill)	Радиус
¹³⁷ Cs nscore	0.04	Сферическая	0.96	75
⁹⁰ Sr nscore	0.25	Сферическая	0.75	75
⁹⁰ Sr nscore - ¹³⁷ Cs nscore	0.05	Сферическая	0.4	75

Таблица 1. Модели авто- и кросс-вариограмм для ⁹⁰Sr и ¹³⁷Cs.

Для всех моделей выполняется условие (15): Для наггета:

$$\begin{vmatrix} 0.25 & 0.05 \\ 0.05 & 0.04 \end{vmatrix} = 0.0075 > 0$$

Для Сферической модели:

$$\begin{vmatrix} 0.75 & 0.4 \\ 0.4 & 0.96 \end{vmatrix} = 0.56 > 0$$

Далее было проведено совместное последовательное Гауссово моделирование 30-ти равновероятных реализаций пространственного распределения ⁹⁰Sr на регулярной сетка 42×70 с размером ячейки 2×2 км. Результаты моделирования были преобразованы обратно из нормального распределения в значения загрязнения при помощи таблицы прямого преобразования. Концы распределения были линейно аппроксимированы. После этого был проведен анализ результатов и их представление в виде различных карт. Результаты совместного моделирования сравнивались с результатами последовательного Гауссова моделирования, полученными в [5].

На рисунке 22 представлены равновероятные реализации совместного моделирования. Реализации были проанализированы на воспроизводимость распределения (гистограммы) и пространственной структуры (вариограммы) исходных данных. На рисунках 13-15 представлены гистограммы исходных данных и нескольких косимуляций в сравнении с гистограммами реализаций, полученных путем отдельного последовательного Гауссова моделирования ⁹⁰Sr. Статистическое описание распределений представлено в таблице 2. Они показывают большую близость реализаций совместного моделирования к исходным данным, чем реализаций отдельного моделирования ⁹⁰Sr (см. рис. 23). Совместное моделирование лучше воспроизводит пространственную корреляционную структуру данных. Вариограммы по всем направлениям для исходных данных и реализаций совместного и отдельного моделирования приведены на рисунке 10. Анизотропия пространственной структуры не моделировалась, что сказалось на результатах – реализации совместного моделирования обладают различной анизотропией, отображенной не вариограмных розах (см. Рис. 16-18). Реализации совместного моделирования N-S (см. Рис. 19-21).

Карты равновероятных реализаций косимуляций ⁹⁰Sr приведены на рисунке 22. На основе 30-ти равновероятных реализаций был проведен вероятностный анализ результатов. Были получены карты средних оценок Е-типа (E-type) (см. 24); карты вероятности превышения уровней принятия решений 0.2, 0.5, 0.7 Ки/кв.км (см. Рис. 26); карты оценок с вероятностью превышения 0.1, 0.5, 0.8 (см. Рис. 28). Для

сравнения приведены соответствующие карты для результатов последовательного Гауссова моделирования одной переменной ⁹⁰Sr (см. Рис. 25, 21, 23). Из карт следует значительное улучшение результатов при использования совместного подхода к моделированию. Дополнительные данные по ¹³⁷Cs позволяют получить более точную пятнистую картину распределений ⁹⁰Sr.

Статистика	⁹⁰ Sr						
	измерен ия	косим. 1	косим. 2	косим. З	косим. 4	симул. 1	симул. 2
Количество	286	2940	2940	2940	2940	3150	3150
точек							
Среднее значение	0.2895	0.287672	0.289128	0.273314	0.319953	0.319536	0.302263
Медиана	0.2230	0.20235	0.2013	0.19895	0.22195	0.25455	0.233
Минимум	0.0180	0.018	0.018	0.018	0.018	0.0183	0.0172
Максимум	1.3610	1.361	1.361	1.361	1.361	2.4012	12.7427
Нижняя	0.1460	0.12805	0.131	0.1257	0.141	0.174	0.155
квартиль 25%							
Верхняя	0.3710	0.37355	0.365	0.34805	0.389	0.389	0.374
квартиль 75%							
Размах	1.343	1.343	1.343	1.343	1.343	2.3829	12.7255
Межквартиль	0.225	0.2455	0.234	0.22235	0.248	0.215	0.219
ное							
расстояние							
Вариация	0.0050	0.059692	0.06213	0.05254	0.079961	0.047561	0.098389
Стандартное	0.2231	0.24432	0.249258	0.229217	0.282774	0.218086	0.31367
отклонение							
Коэфф.	1.9867	1.931084	2.02949	2.070936	1.909248	1.989479	20.53436
симметрии							
Эксцесс	4.9202	4.18158	4.46614	5.041856	3.46437	6.435103	786.3958

Таблица 2. Итоговая статистика реализаций косимуляций ⁹⁰Sr (⁹⁰Sr-¹³⁷Cs) в сравнении с измерениями и реализациями последовательного Гауссова моделирования.

Выводы

- 1. Совместный подход к оцениванию радиоактивного загрязнения ⁹⁰Sr и ¹³⁷Cs существенно улучшает результаты анализа при недостатке информации по ⁹⁰Sr.
- Метод совместного последовательного Гауссова моделирования примененный для получения равновероятных реализаций пространственного распределения ⁹⁰Sr имеет ряд преимуществ по сравнению с моделированием ⁹⁰Sr отдельно от ¹³⁷Cs:
- лучшая воспроизводимость исходного распределения (гистограммы и статистических характеристик);
- лучшая воспроизводимость пространственной корреляционной структуры (вариограммы) данных;
- получение более вариабельных средних оценок Е-типа с присутствием пятен высокого загрязнения;
- получение более репрезентативных оценок вероятности превышения уровней загрязнения.
- 3. Метод совместного стохастического моделирования хорошо работает в условиях высокой вариабельности данных. С помощью него можно получить вероятностные оценки превышения заданного уровня загрязнения и оценки с заданной вероятностью превышения. Равновероятные реализации пространственного распределения позволяют оценить неопределенность оценки.

Благодарность. Работа была частично поддержана грантами ИНТАС 94-2361 и 96-1957.

Литература

- 1. Atlas on Caesium contamination of Europe after the Chernobyl nuclear power plant accident. Ed. M. De Cort, Yu. Tsaturov. EUR 16542 EN. 1996.
- 2. М.Ф. Каневский, Р.В. Арутюнян, Л.А. Большов, В.В. Демьянов, Е.А.Савельева, Т. Хаас. *Геостатистический подход к анализу чернобыльских выпадений*. Известия Академии Наук. Энергетика, номер 3, стр. 34-46, 1995.
- 3. M. Kanevsky, R. Arutyunyan, L. Bolshov, V. Demyanov, M. Maignan. Artificial neural networks and spatial estimations of Chernobyl fallout. Geoinformatics, 1996, vol. 7, nos. 1-2.
- 4. M. Kanevsky. Chernobyl Fallout: Stochastic Simulations of the Spatial Variability and Probability Mapping. Preprint NSI-23-94. Moscow 1994.
- 5. М.Ф. Каневский, В.В. Демьянов. Непараметрическая геостатистика, стохастическое моделирование и анализ радиоэкологических данных. Препринт ИБРАЭ 95-10, Москва 1995.
- 6. М.Ф. Каневский, В.В. Демьянов, С.Ю. Чернов. Совместный пространственный анализ ¹³⁷Cs и ⁹⁰Sr Чернобыльских выпадений. Препринт ИБРАЭ 96-04. Москва 1996.
- 7. G.W. Verly. Sequential Gaussian Cosimulation: A Simulation Method Integrating Several Types of Information. Geostatistics Troia, part 1. Ed. A. Soares, Kluwer Academic Publisher, 1992, pp.543-554.
- 8. E. H. Isaaks, R. M. Shrivastava. Introduction to Applied Geostatistics. Oxford University Press, 1989.
- 9. D.E. Myers. The Linear coregionalization and simultaneous diagonalization of the variogram matrix function. 1995, Sciences de la Terre 32, 125-139.
- D. Mayers. Pseudo-Cross Variograms, Positive Definitess and Cokriging. Hydraulic Engineering, M.A. Ports (ed.), American Society of Civil Engineering, pp. 795-800.
- 11. P. Goovaerts. Geostatistics for Natural Resources Evaluation. Oxford University Press, 1997.

Рисунок 1. Данные по загрязнению ⁹⁰Sr западной части Брянской области.

Рисунок 2. Данные по загрязнению ¹³⁷Cs западной части Брянской области.

Рисунок 3. Гистограммы абсолютных и нормализованных значений ¹³⁷Cs.

Рисунок 4. Гистограммы абсолютных (слева) и нормализованных (справа) значений ⁹⁰Sr.

Рисунок 5. Нормальная бумага для абсолютных (слева) и нормализованных (справа) значений ¹³⁷Cs.

Рисунок 6. Нормальная бумага для абсолютных (слева) и нормализованных (справа) значений ⁹⁰Sr.

Рисунок 7. Тест на бинормальность ⁹⁰Sr: индикаторные вариограммы для нормализованных данных (слева) и для абсолютных значений (слева), отсечения по нижней квартиле (в верху), медиане (в середине), верхней квартиле (в низу).

Рисунок 8. Тест на бинормальность ¹³⁷Cs: индикаторные вариограммы для нормализованных данных (слева) и для абсолютных значений (слева), отсечения по нижней квартиле (вверху), медиане (в середине), верхней квартиле (внизу).

Рисунок 9. Тест на бинормальность нормализованных данных по ⁹⁰Sr и ¹³⁷Cs в сравнении с $\sqrt{\pi}$ ≈1.772454.

Рисунок 10. Вариограммы по всем направлениям для реализаций косимуляций ⁹⁰Sr в сравнении с вариограммой измерений и вариограммой реализации последовательного Гауссова моделирования.

Рисунок 11. Экспериментальная вариограмма ⁹⁰Sr nscore (вверху), ¹³⁷Cs nscore (в середине), кроссвариограмм ⁹⁰Sr nscore-¹³⁷Cs nscore (внизу) и их модели, без применения линейной модели корегионализации).

Рисунок 12. Экспериментальная вариограмма ⁹⁰Sr nscore (вверху), ¹³⁷Cs nscore (в середине), кроссвариограмм ⁹⁰Sr nscore-¹³⁷Cs nscore (внизу) и их модели с применением линейной модели корегионализации).

Рисунок 13. Гистограмма измерений ⁹⁰Sr.

Рисунок 14. Гистограммы реализаций косимуляций ⁹⁰Sr (совместного моделирования ⁹⁰Sr-¹³⁷Cs).

Рисунок 15. Гистограмма реализации ⁹⁰Sr последовательного Гауссова моделирования.

Рисунок 16. Вариограмная роза измерений ⁹⁰Sr.

Рисунок 17. Вариограмные розы реализаций косимуляций ⁹⁰Sr.

Рисунок 18. Вариограмная розы реализаций симуляций ⁹⁰Sr.

Рисунок 19. Роза дрейфа измерений ⁹⁰Sr.

Рисунок 20. Розы дрейфа для реализаций косимуляций ⁹⁰Sr.

Рисунок 21. Розы дрейфа для реализаций симуляций ⁹⁰Sr.

Рисунок 22. Равновероятные реализации распределения ⁹⁰Sr косимуляций ⁹⁰Sr-¹³⁷Cs.

Рисунок 23. Равновероятные реализации распределения ⁹⁰Sr последовательных Гауссовых симуляций ⁹⁰Sr.

Рисунок 24. ⁹⁰Sr косимуляции ⁹⁰Sr-¹³⁷Cs: ⁹⁰Sr последовательное Гауссово моделирование: средняя оценка E-muna (E-type).

Рисунок 25. ⁹⁰Sr последовательное Гауссово моделирование: средняя оценка E-типа (E-type).

Рисунок 26. ⁹⁰Sr Косимуляции ⁹⁰Sr-Cs137: вероятность превышения уровней: 0.2, 0.5, 0.7 Ки/кв.км.

Рисунок 27. ⁹⁰Sr последовательное Гауссово моделирование: вероятность превышения уровней: 0.2, 0.5, 0.7 Ки/кв.км.

Рисунок 28. ⁹⁰Sr косимуляции ⁹⁰Sr-¹³⁷Cs: оценки М-типа, соответствующие уровням вероятности 0.1, 0.5, 0.8. Эти оценки могут быть превышены действительными значениями с этой вероятностью.

Рисунок 29. ⁹⁰Sr симуляции: оценки М-типа, соответствующие уровням вероятности 0.1, 0.5, 0.8. Эти оценки могут быть превышены действительными значениями с этой вероятностью.