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Аннотация 

В работе описана модель Support Vector Regression (регрессия на опорных векторах), основанная на 
статистической теории обучения. На примере реальных данных по загрязнению почв Брянской области 
радионуклидом 137Cs рассмотрена методология применения SVR модели к решению задачи 
пространственного картирования. Подробно рассмотрены методы настройки параметров модели. 
Исследовано поведение модели при наличии в данных искусственного шума и выбросов (outliers). 
Обсуждаются различные способы использования дополнительной информации о точности проведенных 
измерений для улучшения прогноза путем внесения этой информации в модель SVR. Представлены 
предварительные результаты моделирования данных по окружающей среде с использованием 
модификации SVR модели, позволяющей моделировать нестационарные данные при наличии в них 
пространственных структур различных масштабов. 

Pozdnukhov A., Kanevski M., Maignan M., Canu S. ROBUST MAPPING OF SPATIAL 
DATA WITH SUPPORT VECTOR REGRESSION. Preprint IBRAE-2002-18. Moscow: 
Nuclear Safety Institute RAS, July 2002. 17 p. — Refs.: 14 items. 

Abstract 

The paper is devoted to the description of the Support Vector Regression - a model based on the Statistical 
Learning Theory. The methodology of application of the SVR models to the problem of spatial data prediction 
mapping is considered on a real case study: soil contamination with 137Cs radionuclide in Briansk region. The 
procedure of SVR hyper-parameters tuning is considered in details. The cases of noisy data and data with 
outliers were considered. A way of incorporation the additional information on measurements quality is 
discussed. Preliminary results on multi-scale SVR modeling are presented.  
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1 Introduction 

Spatial data mapping is of great importance in various fields: environment, health care, economics. A lot of 
state-of-the-art methods can be used to make predictions based on some empirical data (measurements): 
deterministic interpolations, methods of geostatistics: the family of kriging estimators [3], machine learning 
algorithms such as artificial neural networks (ANN) of different architectures, hybrid ANN-geostatistics models 
[8], etc. 

All the methods mentioned above can be used for solving the problem of spatial data mapping. But when 
dealing with empirical data we can’t trust our data completely as it is always corrupted by noise, sometimes by 
noise of unknown nature. That’s one of the reasons why deterministic models can be inconsistent, since they treat 
the measurements as values of some unknown function that should be interpolated. Kriging estimators treat the 
measurements as the realization of some spatial random process. But for obtaining the estimation with kriging 
one has to estimate the spatial structure of data: spatial correlation function or (semi-)variogram, while this task 
can be complicated if there is not sufficient number of measurements. ANN is a powerful tool, but it is also suffer 
from the number of reasons. ANNs of a special type – multiplayer perceptrons – are often used as a detrending 
tool in hybrid (ANN+geostatistics) models [8].  

So, we are interested in a method that would be robust to noise in measurements, would deal with the small 
empirical datasets and has solid mathematical background. 

The present paper deals with such model, based on Statistical Learning Theory (SLT) - Support Vector 
Regression. SLT is a general mathematical framework devoted to the estimating of the dependencies from 
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empirical data [14]. SLT models for classification - Support Vector Machines - have shown promising results on 
different machine learning tasks. The results of SVM classification of spatial data are also promising [5,7]. The 
properties of SVM for regression - Support Vector Regression (SVR) are less studied. First results of the 
application of SVR for spatial mapping of physical quantities were obtained by the authors in [5] for mapping of 
medium porosity, and [6,9] for mapping of radioactive contaminants activity. The presented paper is devoted to 
further understanding of properties of SVR model for spatial data analysis. 

We'll present the theory of the method in section 2. Section 3 discusses standard application of SVR for 
spatial data mapping on the real case study - soil pollution by Cs137 radionuclide. Sections 4 discusses the 
properties of the model applied to noised data or data with outliers. Section 5 is devoted to the extension of SVR 
model that allows incorporating some extended information into the standard SVR. Section 6 presents some 
preliminary results on the multi-scale modeling using SVR. Section 7 concludes the presented paper. 

The paper partly follows the terminology used in Machine Learning.   

2 Theory of SVR 

2.1 Problem statement in Statistical Learning Theory and Loss functions 
 
First we sate general problem of regression estimation as it is presented in the scope of Statistical Leaning 

Theory. Suppose we are given a set of observations generated from an unknown probability distribution P(x, y) 
{(x1,y1),…(xN,yN)} with xi∈Rn, yi∈R and a class of functions F={f | Rn→R}. Our task is to find a function f from 
the given class of functions that minimizes a risk functional: 

 ∫ −= ),()),((][ yxdPxxfyQfR  (1) 

where Q is a loss function indicating how the difference between measurement value and model’s prediction 
is penalized.  

As P(x,y) is unknown, one can compute an empirical risk: 
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 When it is known that the measurements are corrupted with additive normal noise, then minimization of the 
empirical risk with a quadratic loss function results in a best unbiased estimator of the regression f in the selected 
class F. But when it is only known that noise generating distribution is symmetric, the use of (modulus) linear 
loss function is preferable, and results in a model from so-called robust regression family [11]. 

Support Vector Regression model is based on a new type of loss functions, so-called ε-insensitive loss 
functions. For example linear ε-insensitive loss is defined as  
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Quadratic ε-insensitive and Huber ε-insensitive loss functions are also used in SVR. The loss function that 
can be useful in applications where underestimations and overestimations are not equivalent is a non-symmetric 
linear ε-insensitive loss: 
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2.2 Connections with Maximum Likelihood estimators 
 
To understand the presented approach of minimizing the risk, we establish the connection between Maximum 

Likelihood Estimators and risk minimization [12]. If the data have been generated according to the model 

4 



 )())(()()|(),( xPxfyPxPxyPyxP −==    (5) 

we can write the likelihood of the estimation: 
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Assuming that for some function Q  
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the likelihood can be written as 
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and maximization of likelihood results in minimizing  
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what is equivalent to empirical risk minimization. 
 

2.3 Linear SVR: fitting the hyper-plane 
 
We start from the estimation of regression function in a class of linear functions F = {f(x) |  f(x)=(w,x)+b}. 

Support Vector Regression is based on the Structural Risk Minimization principle, which results in a penalization 
of model complexity simultaneously with keeping small empirical risk (training error). The complexity of linear 
functions can be controlled by the term ||w||2 [14]. By another side, we have to minimize the empirical risk. If the 
symmetrical linear ε-insensitive loss is used, than empirical risk minimization is equivalent to adding the slack 
variables ξi , ξi

* into the functional with the linear constraints (6). Introducing the trade-off constant C, we arrive 
at the following optimization problem: 
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The slack variables ξi , ξi
* measure the distance between the observation and the ε tube (see the example for 

non-linear function r(x) in figure 1). The distance between the observation and the ε and ξi , ξi
* is illustrated by 

the following example: imagine you have a great confidence in your measurement process, but the variance of the 
measured phenomena is large. In this case, ε has to be chosen a priori very small while the slack variables ξi, ξi

* 
are optimized and thus can be large. Remember that inside the epsilon tube ([f(x)-ε, f(x)+ε]) loss function is zero. 
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Figure 1. Support vector regression. Explanation of the ε–tube and slack variables 

 
Note that by introducing the couple (ξi , ξi

*) the problem has now 2n unknown variables. But these variables 
are linked since one of the two values is necessary equals to zero. Either the slack is positive (ξi

* = 0) or negative 
(ξi

 = 0).  Thus, yi ∈ [f(xi)- ε -ξi, f(xi)+ ε +ξi
*].  

 
A classical way to reformulate a constraint based minimization problem is to look for the saddle point of 

Lagrangian L: 
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where α α η ηi i i i, , ,* *  are Lagrangian multipliers associated with the constraints. They can be roughly 

interpreted as a measure of the influence of the constraints in the solution. A solution with α αi i= =* 0  can be 
interpreted as “the corresponding data point has no influence on this solution”. Other points with non-zero αi or 
αi

* are the “support vectors (SVs)“ of the problem. 
At the minimum the derivative of the Lagrangian equals to zero (Kuhn-Tacker conditions). Thus it can be 

checked that: 
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These variables can be removed from the original formulation of the minimisation problem to get the dual 
formulation of the problem:  
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This problem is a Quadratic Programming problem hence can be numerically solved by a number of methods. 
After we get the values αi and αi

* we can compute b from the constraints of primal problem (5) and make 
predictions: 
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2.4 Non-linear SVR. Kernel trick 
 
 Note that both solution (10) and the optimization problem (9) are written in the terms of dot products. Hence 

we can use a kernel trick to achieve non-linear regression model. We substitute the dot products (xi,xj) with a 
suitable function { K∈L2(Rn)⊕L2(Rn), K | (Rn⊕Rn)→R }. If kernel function satisfy the Mercer’s conditions: 

 )(0)()(),( 2 nRLgxdxdxgxgxxK ∈∀>′′′′′′′′′∫∫  (16) 

then it can be expanded in a uniformly converging series 
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where {λj, Φj(.)} is a eigensystem of K. We may regard Φj(x) as some j-th feature of vector x, then kernel K is a 
dot product in some feature space. As (11) defines positive-definite kernels, the substitution of K instead of dot 
products in (9) results in a still convex QP problem: 
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and the prediction is a non-linear regression function: 
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3 Case Study 

In the present section the problem of spatial data mapping (spatial regression) using SVR is considered. We'll 
consider the mapping of soil pollution by Chernobyl radionuclide Cs137 in western part of Briansk region, 
Russia. 

3.1 General methodology and Data description 
The full case study should follow general methodology of spatial data analysis with geostatistics and Machine 

Learning algorithms: monitoring network analysis, understanding of clustering, exploratory data analysis, 
exploratory variography, understanding of spatial continuity; data preparation: splitting of data in training testing 
and validation data subsets, SVR training and testing, selection of the optimal SVR hyper-parameters, 
understanding the quality of the results by using exploratory analysis (statistics, variography) of the residuals, 
validation of the results, spatial data mapping with optimal SVR model. First stages are common for all the 
environmental mapping tasks and will be considered in brief. The examples of full-stage research can be found in 
[8]. The application of SVR to spatial data mapping is considered in details. 

Full data set consists of 684 measurements, Lambert projection co-ordinates are used, pollution 
values(originally in kBq/sq.m.) were scaled into [0,1] interval. 200 validation data points were selected using 
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declustering  procedure to obtain the representative validation data. Postplot of training (484 measurements) data 
and the locations of validation points are shown in figure 2, left. 

 

3.2 Tuning of SVR parameters 

There are several hyper-parameters to be selected during SVR tuning: ε, C, and kernel parameters. The kernel 
choice is an important part of SVR application. Gaussian RBF kernel 

 ,),(or,),( )()(2
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xxxx
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 was found to be the most suitable due to several reasons: it is easy to interpret, it has one free parameter - 
bandwidth (isotropic kernel) or three free parameters (anisotropic kernel n a 2D input space), it is "local" in a 
sense that it tends to zero as distance tends to infinity. All these features make the Gaussian RBF kernel attractive 
for spatial data mapping. Isotropic RBF kernels were used for the present case study.  

Let's notice that from SVR theory (see section 2.4) it follows that kernel bandwidth σ is common for all the 
training points and can't be varied in space, while ε and C can be chosen individually for every training point. 
We'll show the way how to incorporate additional information into model by setting individual εi and Ci to each 
training point in section 5. 

First of all we'll consider the SVR application when ε and C are the same for all the points and discuss general 
SVR properties for spatial data mapping.  

Two wide-used ways to tune the parameters exist: 1) to split data into training-testing subsets and analyse the 
testing error cube 2) calculate and analyse the leave-one-out error cube. Both ways will be illustrated in the 
present study. Data splitting into training and testing subset is shown as the postplot in figure 2, right. 

 Comprehensive search in 3D hyper-parameter space (σ, ε, C) was performed. Some 2D errors surfaces (σ, C) 
are presented in figures 3. Here and below error surfaces are presented as follows: X-axis - RBF kernel 
bandwidth σ, Y-axis - logarithm of C parameter. (Note that range of C parameter in leave-one-out error surface 
differs from the range on the rest figures.) The value of ε parameter was fixed at ε=0.02. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Left postplot: Full data set (boxes) and locations of validation points (crosses); Right postplot: 
training sub-set (boxes) and testing sub-set (small empty circles) 
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3.3 Influence of the parameters on the solution 
Partly basing on the presented error surfaces we consider the influence of the parameters on the solution. 
 
σ - kernel bandwidth. The most evident properties depending on this parameter are: at small σ values - much 

less than the region's area - the model is close to overfitting, at large σ values - of the order of the region's area - 
to oversmoothing (or underfitting in ML terminology). The same is clear from SLT side: small σ values lead to 
too high VC-dimension - high dimension of the feature space - too many features are used for modelling, that 
leads to overfitting. For large σ values the VC dimension is too low - too few features are used to model the data.  

The optimal value of this parameter mainly depends on two characteristics of data: correlation radius and data 
variability. Another property that was observed is presented below. 

Let us fix the testing set and consider several training sets of different sizes (50, 100, 150, 200, 250 points) 
extracted from the data. The average distance between points is used as a characteristic of the training data 
monitoring network. Error surfaces for fixed ε=0.05 were obtained for every training set and the best sigma in a 
sense of minimal testing error was chosen for every set. All the results are averaged over five different training 
sets of the chosen size. The dependence between "optimal" sigma's and averaged distance is shown in the Figure 
4.  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Training error (top left), normalized number of SVs (top right), testing error (bottom left) and 
leave-one-out error (bottom right) surfaces. X-axis: RBF kernel bandwidth, Y-axis: Logarithm of C 

parameter 
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The conclusion one can make is: optimal bandwidth depends of average distance between training points. 

This dependence is not very evident for the training set of the sizes >150 points, but we can conclude that optimal 
value of sigma is roughly proportional to the average distance. For small training sets it is evident that we have to 
use large kernel bandwidths. It is also clear that this dependence vanishes when training set is large enough. 

The conclusion above is just a kind of heuristics that can be used for RBF kernel parameter tuning. In general 
the question of optimal sigma is connected with the complicated question of monitoring network analysis: 
whether we can describe given/unknown phenomenon with the measurements from given monitoring network.  

  
C - the parameter that defines the trade-off between training error and model complexity, an inverse value is 

the regularisation constant. In dual formulation C defines the upper bound of the multipliers αi and αi
* (see Eq. 

18), hence defines the maximal influence the point can exert on the solution. These two considerations allow to 
conclude: 1) the more noisy the data the less should be the value of C, at the same time the lower the value of C, 
the smoother the results of prediction mapping 2) C should be not much less then the maximum of the training 
data to fit the high values well.  

 
ε - the width of the insensitive region of the loss function. This is the parameter that defines the sparseness of 

the SVR solution - the points that lie inside the ε-tube have zero weights. It is the main parameter that 
incorporates the information of the measurements' quality. It should be of the same order as the measurements' 
accuracy or as the square root of nugget in model variogram. It also influence on the smoothness of the mapping: 
the larger its value, the smoother the result. Let  us remind, that nugget incorporates measurement errors and 
small scale variability.   

 

3.4 Validation of SVR model with chosen parameters 
The optimal parameters for the presented case study can be chosen taking into account training, testing and 

cross-validation errors, and the number of support vectors. Two sets of parameters (hence two models) will be 
considered: SVRtest(C = 4, ε = 0.02, σ = 3) and SVRloo(C = 0.32, ε = 0.02, σ = 4) according to the minimum of 
testing and cross-validation errors correspondingly. These two models will be compared below. 

 

Table 1. Characteristics of SVR models 
 Training 

 RMSE 
Testing/LOO 

RMSE 
Normalized 

 Number of SV 
Validation 

RMSE 
Correlation 
coefficient 

SVRtest 0.019 0.064 0.64 0.078 0.80 
SVRloo 0.048 0.071 0.53 0.064 0.86 

 
Table 1 presents some characteristics of the models. The results on validation data show that SVRloo 

outperformed SVRtest. In [9] it was proposed to tune the parameters basing on the analysis of testing error, and 
cross-validation error surfaces were not used since testing error calculation is much faster then leave-one-out 
error calculation. But as it follows from the presented (and several other) case study, it can result in choice of 
non-optimal parameters. This becomes more clear if we calculate the validation error surface (figure 5). As one 
can see (compare figures 3 (bottom) and 5), validation error is reproduced by cross-validation error well, what is 

 
Figure 4. Average distance between training points and “optimal” sigma values 
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not surprising since cross-validation gives a non-biased estimation of the validation error. At the same time, 
testing error surface just satisfactory reproduces the validation error. Hence if cross-validation calculation is too 
time consuming, it can be recommended to use k-fold cross-validation or use testing error averaged over several 
splits.  

In conclusion the scatter-plot of the validation results is presented in the figure 6. 
Another powerful tool to control the quality of the results is the variography of the residuals. Let us consider 

the omnidirectional variograms of the validation data and the residuals of SVR prediction of validation data for 
both models (figure 7).  

Validation data residuals variograms of both SVRloo and SVRtest demonstrate almost pure nugget effect, hence 
models extracted all spatially structured information. It means good results on validation data. 

 

3.5 SVR prediction mapping 
To conclude the part devoted to the application of SVR for the spatial data mapping, we present the map of 

prediction of Cs137 activity of both models. The spot of high activity in the center is reproduced by SVRtest more 
accurately due to high value of C. SVRloo gives more smoothed result, that nevertheless is better for the rest part 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Validation error surface   Figure 6. Scatter-plot of validation results 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Omnidirectional variogram of validation data and residuals of both models 
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of the mapping area according to validation results. Note that SVR can give negative predictions (empty areas on 
figures 8). 

  

4 Robustness of the solution 

To understand the robustness of SVR we'll consider two cases: mapping of data with artificially added normal 
noise and data with artificial outliers in the training set. We’ll use the same split into sub-sets as in the previous 
section. Hyper-parameters were tuned by calculation the testing error as it was discussed above. Although it was 
shown that cross-validation error calculation is preferable for tuning, testing error surfaces shows all the features 
of SVR model applied to data with noise or outliers. Obtained testing error surfaces are presented on figure. 
Parameter ε was set to 0.02 as before. Additional noise has zero mean and variance (0.02)2.  

Artificial outliers were obtained from real data by increasing the order of measured value. This can be 
interpreted as someone’s misprint during data collection. Four outliers were added to the training set. Testing set 
was left free of outliers.  

As one can see from the testing error surfaces in figure 9 (compare with figure 3 (bottom left)), though testing 
error increases, the behavior of the model is stable. "Optimal" parameters were chosen and validation error was 
obtained. The results are presented in the table below. 

Table 2. Characteristics of SVR models. Noise and outliers were added to the training set 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  Prediction mapping of SVRtest(left) and SVRloo(right) models 

 Original data Noise N(0, 0.02) Outliers 
"Optimal" σ 3 3 4 
"Optimal" C 4 2 0.6 

Training error 0.019 0.02 0.42 
Testing error 0.064 0.061 0.066 

NSV 0.64 0.72 0.63 
Validation error 0.078 0.079 0.079 
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Figure 9. Testing error surfaces: training data with noise (left) and with artificial outliers (right) 

 
As it is seen from the error surfaces, the model “ignores” the outliers when C parameter is small. This causes 

very high training error, but it is just due to outliers, the rest data is modeled well within the ε-insensitive tube. 
The ε-insensitiveness also let the model be robust to noise. The results with original data and noised data are 
quite similar.  

The main conclusion one can make is: testing and validation error increased insignificantly, it was possible to 
select parameters to obtain appropriate model in spite of presence of noise/outliers in training data. 

 

5 Additional information in SVR modeling 

This section is devoted to incorporation of additional available information into SVR model. Two types of 
additional information can be taken into account. First type is an information accessible in all training points and 
all the points of the prediction grid, and the second type is an information that is not accessible in the prediction 
grid points but known for training set points. Information of the first type (altitude, soil type, etc.) can be 
incorporated into the model as an extra input variable that will lead to the type of ANN + External Drift 
(ANNEX) model.  

Information of the second type (as a rule related to the measurement's procedure) can be incorporated into 
SVR by different ways. We'll consider the extended data on the number of probes Ni taken in the given point 
(from 10 to 300) to obtain the pollution value. Postplot of these data is presented in the figure 10, left.  

Large number of probes in a given point mean more exact measurement, thus this information can be used in 
SVR by setting individual εi and/or Ci values for every training point. Both εi and Ci are connected with the 
accuracy of the measurements as it was stated above. Three models will be considered below:  SVRε (fixed C and 
individual εi), SVRC (fixed ε and individual Ci) and SVRCε with both individual parameters εi and Ci. We'll set 

N
N

i
Aveεε = , and N

N
i

AveCC = , where NAve = 20 is the average number of probes taken in a point, and ε 
and C are still free parameters has to be tuned as it was described before. Our aim here is not to stress on tuning 
the parameters but to show that this additional information incorporated into model can improve the result in a 
sense of validation error. The characteristics of the models are presented in a table 3. 

One can see (compare with SVRloo, the model described before) that an improvement in validation error is 
achieved with all advanced models. SVRCε model even outperformed the “theoretically” best possible SVR (in a 
sense of validation error) with fixed parameters – see the validation error surface above (figure 5). Training error 
decreased for all models and number of NSV increased. Mapping results of the SVRCε model are presented in the 
figure 10, right. The spots of high Cs activity are reproduced since these measurements are quite confident 
according to the number of probes taken at corresponding locations. 
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Table 3. Characteristics of SVR models with additional information included. SVRloo added for the 
convenience of the comparison 

 Training 
 RMSE 

Normalized 
 Number of SV 

Validation 
RMSE 

Correlation 
coefficient 

SVRε (ε=0.02, σ=3, C=0.5) 0.033 0.62 0.060 0.885 
SVRC (ε=0.02, σ=3, C=0.3) 0.030 0.61 0.061 0.880 
SVRCε (ε=0.02, σ=3, C=0.5) 0.029 0.63 0.058 0.891 

SVRloo 0.048 0.53 0.064 0.86 
 

6 Multi-scale SVR modeling 

The models considered before are single-scaled. The solution given by Eq. 19 is a linear combination of 
kernel functions. We've used isotropic RBF kernel functions with one parameter – kernel bandwidth. As it was 
discussed above, this parameter is common for all the training points and can't be varied in space. There is a 
SVR-type model following from Vicinal Risk Minimization learning principle that allows to use individual 
bandwidths for every training point [14]. But this model is not well studied yet to be applied to environmental 
data. 

Here we consider another extension of the "standard" SVR model – a multi-kernel SVR [13]. This SVR-type 
model uses the so-called dictionary representation of the regression function. Several types of kernels (or several 
kernels of the same type with different parameters) are used in this model. The main idea of the adaptation of this 
model to environmental data is to use Gaussian RBF kernels with different bandwidths to model different 
correlation scales in complex non-stationary multi-scale data. 

 

6.1 Multi-kernel SVR 
Instead of ordinary SVM where we seek for the regression function in the form 

 bxxKxf
N

i
ii += ∑

=1
),(),( αα , 

 we'll seek the regression function in a form 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Number of probes taken for the measurements (left). Prediction mapping with advanced SVR 

model – information on number of probes included (right) 
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where we denote αi
p the weight corresponding to i-th training point and p-th kernel. We'll construct a SVR-type 

algorithm which would tune the α parameters. This is achieved by using the support-vector type regularizer with 
an ε-insensitive empirical risk term weighted by a trade-off constant C. The resulting optimization problem is a 
QP-problem what guarantees the uniqueness of the solution. This means that the α coefficients in (20) are 
uniquely determined automatically from the solution. In the case of several RBF kernel functions with different 
bandwidths it means that the model is a multi-scale decomposition of the solution. 
 

6.2 Multi-kernel LP-SVR 
The LP-SVR model is an analogue of the ordinary SVR that uses the linear regularization term hence gives a 

Linear Programming problem as the final optimization problem. We use standard linear ε-insensitive loss 
function. The regularizer for LP-SVM’s is as follows: 

 ∑∑
= =

+=
k

p

N

i

p
i

p
iLPQ

1 1
)ˆ()( ααα   (21) 

where summation by i corresponds to training data and summation by p corresponds to kernels. 
The resulting optimization problem is a Linear Programming problem: 
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i
p

i ξξαα  
 
The number of variables in the optimization problem is 2*N*K+2*N, where N is a number of the training 

points and K is a number of kernels. The more kernels we use the larger is the problem size and the 
computational time. LP problem can be solved faster then QP, and that is why LP-SVRs are used here for multi-
scale modeling. LP-SVR also possesses the main properties of ordinary QP-SVR including sparseness of the 
solution for non-zero ε.    

Two-scale RBF functions will be used below in the case study: 

 ∑
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i beexf
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22
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1 2
2

2
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6.3 Case study: two-scale model 
Consider the same Cs137 data as we've modeled before with the ordinary single-scale SVR. Figure 11 pre-

sents the testing error surface, kernel bandwidths σ1 and σ2 are plotted along the axis. It is obvious that the result-
ing error surface is reflection symmetric with respect to σ1=σ2 line. One can observe the minima of the testing 
error at the values σ1 = 1 and σ2 = 5 (or σ1 = 5 and σ2 = 1). Let us remind that the observed optimal kernel band-
width in a single-scale SVR model was σ = 3 – some average value in comparison to two-scale SVR.  

Validation error of this two-scale model is 0.058, what is better than single-scale SVR and is the same as for 
complicated model with incorporated additional information (see Table 3). 

The results of the prediction mapping of the two-scale SVR are presented in the figure 12. Notice that the 
spot of the high activity on the west is mainly modeled by the "short-scale" part of the model, while the spots in 
the center of the area are modeled with "long-scale" part. The drawback of the single-scaled model is that it uses 
some averaged spatial scale. 
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Figure 11. Two-scale SVR testing error surface. X, Y axis: 

kernel bandwidths  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Two-Scale SVR prediction mapping 
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7 Conclusions 

Support Vector Regression - a model based on the Statistical Learning Theory - was considered. The 
methodology of application of the SVR models to the problem of spatial data prediction mapping was considered 
on a real case study. Parameters’ influence on the solution and procedure of selecting appropriate values of all 
the parameters was considered in details.  

It was shown that flexibility of SVR makes it an attractive mapping tool and allows obtaining promising 
results even when data set is noisy or contains outliers.  

Advanced SVR modeling in presence of additional information on measurements quality was considered. It 
was shown how to incorporate this additional information into SVR model. Advanced model outperformed 
“standard” SVR in the considered real case study. 

Multi-scale SVR model was considered. This model adapts to non-stationary data containing spatial 
structures of different scales. Preliminary results on the multi-scale SVR modeling showed that two-scale model 
outperformed simple single-scale SVR in the considered case study.  

Further research can be devoted to finding closer theoretical links between geostatistical models and SVR 
(both single and multi-scaled).  
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